» Articles » PMID: 135758

Regulation of Hypoxanthine Transport in Neurospora Crassa

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1976 Nov 1
PMID 135758
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Hypoxanthine uptake and hypoxanthine phosphoribosyltransferase activity (EC 2.4.2.8) were determined in germinated conidia from the adenine auxotrophic strains ad-1 and ad-8 and the double mutant strain ad-1 ad-8. The mutant strain ad-1 appears to lack aminoimidazolecarboximide ribonucleotide formyltransferase (EC 2.1.2.3) or inosine 5'monophosphate cyclohydrolase (EC 3.5.1.10) activities, or both, whereas the ad-8 strain lacks adenylosuccinate synthase activity (EC 6.3.4.4). Normal (or wild-type) hypoxanthine transport capacity was found to the ad-1 conidia, whereas the ad-8 strains failed to take up any hypoxanthine. The double mutant strains showed intermediate transport capacities. Similar results were obtained for hypoxanthine phosphoribosyl-transferase activity assayed in germinated conidia. The ad-1 strain showed greatest activity, the ad-8 strain showed the least activity, and the double mutant strain showed intermediate activity levels. Ion-exchange chromatography of the growth media revealed that in the presence of NH+/4, the ad-8 strain excreted hypoxanthine or inosine, the ad-1 strain did not excrete any purines, and the ad-1 ad-8 double mutant strain excreted uric acid. In the absence of NH+/4, none of the strains excreted any detectable purine compounds.

Citing Articles

Guanine ribonucleotide depletion in mammalian cells. A target of purine antimetabolites.

Nguyen B, Cohen M, Sadee W Cancer Chemother Pharmacol. 1983; 11(2):117-9.

PMID: 6578881 DOI: 10.1007/BF00254259.


Chromosomal loci of Neurospora crassa.

Perkins D, Radford A, Newmeyer D, Bjorkman M Microbiol Rev. 1982; 46(4):426-570.

PMID: 6219280 PMC: 281555. DOI: 10.1128/mr.46.4.426-570.1982.


Guanine uptake and metabolism in Neurospora crassa.

Magill C, Sabina R, Garber T, Magill J J Bacteriol. 1982; 149(3):941-7.

PMID: 6174500 PMC: 216481. DOI: 10.1128/jb.149.3.941-947.1982.


Role of purine base excretion in regulation of purine pools.

Sabina R, Hanks A, Magill J, Magill C Mol Gen Genet. 1979; 173(1):31-8.

PMID: 157418 DOI: 10.1007/BF00267688.


Specificity of uracil uptake in Neurospora crassa.

Dalke P, Magill J J Bacteriol. 1979; 139(1):212-9.

PMID: 156718 PMC: 216847. DOI: 10.1128/jb.139.1.212-219.1979.


References
1.
Reinert W, Marzluf G . Regulation of the purine catabolic enzymes in Neurospora crassa. Arch Biochem Biophys. 1975; 166(2):565-74. DOI: 10.1016/0003-9861(75)90421-x. View

2.
COHN W . The Separation of Purine and Pyrimidine Bases and of Nucleotides by Ion Exchange. Science. 1949; 109(2833):377-8. DOI: 10.1126/science.109.2833.377. View

3.
Pendyala L, Wellman A . Effect of histidine on purine nucleotide synthesis and utilization in Neurospora crassa. J Bacteriol. 1975; 124(1):78-85. PMC: 235867. DOI: 10.1128/jb.124.1.78-85.1975. View

4.
Rao E, Rao T, Debusk A . Isolation and characterization of a mutant of Neurospora crassa deficient in general amino acid permease activity. Biochim Biophys Acta. 1975; 413(1):45-51. DOI: 10.1016/0005-2736(75)90057-7. View

5.
Jackman L, Hochstadt J . Regulation of purine utilization in bacteria. VI. Characterization of hypoxanthine and guanine uptake into isolated membrane vesicles from Salmonella typhimurium. J Bacteriol. 1976; 126(1):312-26. PMC: 233289. DOI: 10.1128/jb.126.1.312-326.1976. View