Raastad M
Front Cell Neurosci. 2019; 13:203.
PMID: 31156391
PMC: 6532452.
DOI: 10.3389/fncel.2019.00203.
Hoshi Y, Okabe K, Shibasaki K, Funatsu T, Matsuki N, Ikegaya Y
J Neurosci. 2018; 38(25):5700-5709.
PMID: 29793978
PMC: 6595977.
DOI: 10.1523/JNEUROSCI.2888-17.2018.
Picton L, Zhang H, Sillar K
J Neurophysiol. 2017; 118(2):1070-1081.
PMID: 28539392
PMC: 5547253.
DOI: 10.1152/jn.00066.2017.
Raimondo J, Burman R, Katz A, Akerman C
Front Cell Neurosci. 2015; 9:419.
PMID: 26539081
PMC: 4612498.
DOI: 10.3389/fncel.2015.00419.
Milder D, Sutherland E, Gandevia S, McNulty P
PLoS One. 2014; 9(3):e91754.
PMID: 24622330
PMC: 3951451.
DOI: 10.1371/journal.pone.0091754.
Thermodynamic regulation of NKCC1-mediated Cl- cotransport underlies plasticity of GABA(A) signaling in neonatal neurons.
Brumback A, Staley K
J Neurosci. 2008; 28(6):1301-12.
PMID: 18256250
PMC: 6671583.
DOI: 10.1523/JNEUROSCI.3378-07.2008.
On the permeability of mammalian non-myelinated fibres to sodium and to lithium ions.
Armett C, Ritchie J
J Physiol. 1963; 165(1):130-40.
PMID: 16992134
PMC: 1359261.
DOI: 10.1113/jphysiol.1963.sp007047.
Mechanisms of hyperpolarization in regenerated mature motor axons in cat.
Moldovan M, Krarup C
J Physiol. 2004; 560(Pt 3):807-19.
PMID: 15297574
PMC: 1665282.
DOI: 10.1113/jphysiol.2004.069443.
Unmyelinated axons in the rat hippocampus hyperpolarize and activate an H current when spike frequency exceeds 1 Hz.
Soleng A, Chiu K, Raastad M
J Physiol. 2003; 552(Pt 2):459-70.
PMID: 14561829
PMC: 2343371.
DOI: 10.1113/jphysiol.2003.048058.
The permeability of frog muscle fibres to lithium ions.
Keynes R, SWAN R
J Physiol. 1959; 147:626-38.
PMID: 14408743
PMC: 1357106.
DOI: 10.1113/jphysiol.1959.sp006265.
POTENTIAL CHANGES IN THE CRAYFISH MOTOR NERVE TERMINAL DURING REPETITIVE STIMULATION.
Dudel J
Pflugers Arch Gesamte Physiol Menschen Tiere. 1965; 282:323-37.
PMID: 14335952
DOI: 10.1007/BF00412507.
THE INITIAL HEAT PRODUCTION ASSOCIATED WITH THE NERVE IMPULSE IN CRUSTACEAN AND MAMMALIAN NON-MYELINATED NERVE FIBRES.
ABBOTT B, HOWARTH J, Ritchie J
J Physiol. 1965; 178:368-83.
PMID: 14298125
PMC: 1357296.
DOI: 10.1113/jphysiol.1965.sp007633.
SODIUM AND THE DORSAL ROOT POTENTIAL.
Carlson C
J Physiol. 1964; 172:295-304.
PMID: 14205022
PMC: 1368833.
DOI: 10.1113/jphysiol.1964.sp007418.
[THE EFFECT OF REPETITIVE ACTIVITY ON THE MEMBRANE POTENTIAL OF MYELINATED FIBERS IN NERVES WITH INTACT BLOOD SUPPLY].
BOEHM H, Straub R
Pflugers Arch Gesamte Physiol Menschen Tiere. 1963; 278:162-71.
PMID: 14093243
POST-TETANIC REPETITIVE ACTIVITY IN THE CAT SOLEUS NERVE. ITS ORIGIN, COURSE, AND MECHANISM OF GENERATION.
Standaert F
J Gen Physiol. 1963; 47:53-70.
PMID: 14060448
PMC: 2195323.
DOI: 10.1085/jgp.47.1.53.
Some effects of changes in ionic concentration on the action potential of sympathetic ganglion cells in the frog.
Blackman J, GINSBORG B, Ray C
J Physiol. 1963; 167:374-88.
PMID: 13971394
PMC: 1359401.
DOI: 10.1113/jphysiol.1963.sp007156.
Metabolic studies on the hyperpolarization following activity in mammalian non-myelinated nerve fibres.
Greengard P, Straub R
J Physiol. 1962; 161:414-23.
PMID: 13901551
PMC: 1359605.
DOI: 10.1113/jphysiol.1962.sp006896.
Threshold, recovery and fatigue of tactile receptors in frog skin.
CATTON W
J Physiol. 1961; 158:333-65.
PMID: 13877400
PMC: 1359970.
DOI: 10.1113/jphysiol.1961.sp006772.
[The effect of lithium ions on the resting potential of myelinated nerve fibers].
BOEHM H, Straub R
Pflugers Arch Gesamte Physiol Menschen Tiere. 1962; 274:468-79.
PMID: 13870459
The excitatory action of acetylcholine on cutaneous non-myelinated fibres.
DOUGLAS W, Ritchie J
J Physiol. 1960; 150:501-14.
PMID: 13817839
PMC: 1363180.
DOI: 10.1113/jphysiol.1960.sp006401.