Yang Y, Daims H, Liu Y, Herbold C, Pjevac P, Lin J
mBio. 2020; 11(2).
PMID: 32184251
PMC: 7078480.
DOI: 10.1128/mBio.03175-19.
Fang Q, Xu W, Yan Z, Qian L
Int J Environ Res Public Health. 2018; 15(4).
PMID: 29617281
PMC: 5923712.
DOI: 10.3390/ijerph15040670.
Fussel J, Lucker S, Yilmaz P, Nowka B, van Kessel M, Bourceau P
Sci Adv. 2017; 3(11):e1700807.
PMID: 29109973
PMC: 5665590.
DOI: 10.1126/sciadv.1700807.
Fujitani H, Kumagai A, Ushiki N, Momiuchi K, Tsuneda S
Front Microbiol. 2015; 6:1159.
PMID: 26528282
PMC: 4607866.
DOI: 10.3389/fmicb.2015.01159.
Chen D, Chalk P, Freney J, Smith C, Luo Q
Microb Ecol. 2013; 30(3):269-84.
PMID: 24185564
DOI: 10.1007/BF00171934.
Microbial ecology of expanding oxygen minimum zones.
Wright J, Konwar K, Hallam S
Nat Rev Microbiol. 2012; 10(6):381-94.
PMID: 22580367
DOI: 10.1038/nrmicro2778.
Unexpected diversity of chlorite dismutases: a catalytically efficient dimeric enzyme from Nitrobacter winogradskyi.
Mlynek G, Sjoblom B, Kostan J, Fureder S, Maixner F, Gysel K
J Bacteriol. 2011; 193(10):2408-17.
PMID: 21441524
PMC: 3133159.
DOI: 10.1128/JB.01262-10.
Nitrate Reductase and Chlorate Toxicity in Chlorella vulgaris Beijerinck.
Solomonson L, Vennesland B
Plant Physiol. 1972; 50(4):421-4.
PMID: 16658189
PMC: 366157.
DOI: 10.1104/pp.50.4.421.
Contributions of Autotrophic and Heterotrophic Nitrifiers to Soil NO and N(2)O Emissions.
Tortoso A, Hutchinson G
Appl Environ Microbiol. 1990; 56(6):1799-805.
PMID: 16348220
PMC: 184513.
DOI: 10.1128/aem.56.6.1799-1805.1990.
Inhibition of chemoautotrophic nitrification by sodium chlorate and sodium chlorite: a reexamination.
Hynes R, Knowles R
Appl Environ Microbiol. 1983; 45(4):1178-82.
PMID: 16346262
PMC: 242435.
DOI: 10.1128/aem.45.4.1178-1182.1983.
Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments.
Belser L, Mays E
Appl Environ Microbiol. 1980; 39(3):505-10.
PMID: 16345525
PMC: 291368.
DOI: 10.1128/aem.39.3.505-510.1980.
Symposium on autotrophy. IV. Some thoughts on the energetics of chemosynthesis.
LEES H
Bacteriol Rev. 1962; 26:165-7.
PMID: 14463618
PMC: 441147.
Kinetics of the nitrite oxidation by Nitrobacter winogradskyi.
LAUDELOUT H, VAN TICHELEN L
J Bacteriol. 1960; 79:39-42.
PMID: 14414502
PMC: 278631.
DOI: 10.1128/jb.79.1.39-42.1960.
[COMPARATIVE STUDIES ON THE EFFECT OF VISIBLE LIGHT ON NITROSOMONAS EUROPAEA AND NITROBACTER WINOGRADSKYI].
Bock E
Arch Mikrobiol. 1965; 51:18-41.
PMID: 14347921
THE EFFECT OF 2-CHLORO, 6-(TRICHLOROMETHYL) PYRIDINE ON THE CHEMOAUTOTROPHIC METABOLISM OF NITRIFYING BACTERIA. II. NITRITE OXIDATION BY NITROBACTER.
Campbell N, Aleem M
Antonie Van Leeuwenhoek. 1965; 31:137-44.
PMID: 14315632
DOI: 10.1007/BF02045883.
ON THE ASSIMILATION OF ENERGY FROM INORGANIC SOURCES IN AUTOTROPHIC FORMS OF LIFE.
KIESOW L
Proc Natl Acad Sci U S A. 1964; 52:980-8.
PMID: 14224403
PMC: 300382.
DOI: 10.1073/pnas.52.4.980.
Kinetics of nitrite oxidation by Nitrobacter winogradskyi.
Boon B, LAUDELOUT H
Biochem J. 1962; 85:440-7.
PMID: 14013807
PMC: 1243762.
DOI: 10.1042/bj0850440.
[The gross equation of carbon dioxide-assimilation of Nitrobacter winogradskyi Buch].
Engel H, Michel P
Arch Mikrobiol. 1959; 34:149-53.
PMID: 13849711
DOI: 10.1007/BF00412747.
[Photoinactivation of NItrobacter winogradskyi Buch].
MUELLER-NEUGLUECK M, Engel H
Arch Mikrobiol. 1961; 39:130-8.
PMID: 13773574
DOI: 10.1007/BF00408615.
The biochemistry of the nitrifying organisms. 6. The effect of oxygen concentration on nitrite oxidation in the presence of different inorganic ions.
Butt W, LEES H
Biochem J. 1960; 76:425-7.
PMID: 13689461
PMC: 1204815.
DOI: 10.1042/bj0760425.