» Articles » PMID: 1309987

Degradation of Cytochrome P450 2E1: Selective Loss After Labilization of the Enzyme

Overview
Publisher Elsevier
Specialties Biochemistry
Biophysics
Date 1992 Feb 14
PMID 1309987
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Mechanism-based inactivation of cytochrome P450 can result in the chemical modification of the heme, the protein, or both as a result of covalent binding of modified heme to the protein. In the present study we took advantage of different modes of inactivation of P450 2E1 by CCl4, 1-aminobenzotriazole, or 3-amino-1,2,4-triazole to investigate parameters which target P450 2E1 for proteolysis from the microsomal membrane. Treatment of mice with CCl4 at the point of maximal induction of P450 2E1 after a single oral dose of acetone resulted in the complete loss of P450 2E1-dependent p-nitrophenol hydroxylation and a 75% loss of immunochemically detectable protein within 1 h of administration. Treatment with 1-aminobenzotriazole at the point of maximal induction caused a complete loss of P450 2E1-dependent p-nitrophenol hydroxylation but only a 12% loss of immunochemically detectable protein 1 h after administration. Treatment of mice with 3-amino-1,2,4-triazole caused a rapid loss of both catalytic activity and microsomal p-nitrophenol hydroxylase activity. However, unlike CCl4 treatment, the activity and enzyme level rebounded 5 and 9 h after treatment. The P450 2E1 ligand, 4-methylpyrazole, administered at the point of maximal induction maintained the acetone-induced catalytic and immunochemical level of P450 2E1. These results suggest that differentially modified forms of P450 2E1 show a characteristic susceptibility to degradation. While there are many potential pathways for protein degradation, the loss of P450 2E1 was associated with increased formation of high molecular weight microsomal ubiquitin conjugates. The formation of ubiquitin-conjugated microsomal protein which correlates with P450 2E1 loss suggests that ubiquitination may represent a proteolytic signal for the rapid and selective proteolysis of certain labilized conformations of P450 2E1 from the endoplasmic reticulum.

Citing Articles

Cytochrome P450 endoplasmic reticulum-associated degradation (ERAD): therapeutic and pathophysiological implications.

Kwon D, Kim S, Correia M Acta Pharm Sin B. 2020; 10(1):42-60.

PMID: 31993306 PMC: 6976991. DOI: 10.1016/j.apsb.2019.11.002.


Hepatospecific ablation of p38α MAPK governs liver regeneration through modulation of inflammatory response to CCl-induced acute injury.

Fortier M, Cadoux M, Boussetta N, Pham S, Donne R, Couty J Sci Rep. 2019; 9(1):14614.

PMID: 31601995 PMC: 6787013. DOI: 10.1038/s41598-019-51175-z.


1-Aminobenzotriazole: A Mechanism-Based Cytochrome P450 Inhibitor and Probe of Cytochrome P450 Biology.

de Montellano P Med Chem (Los Angeles). 2018; 8(3).

PMID: 30221034 PMC: 6137267. DOI: 10.4172/2161-0444.1000495.


Liver Injury by Carbon Tetrachloride Intoxication in 16 Patients Treated with Forced Ventilation to Accelerate Toxin Removal via the Lungs: A Clinical Report.

Teschke R Toxics. 2018; 6(2).

PMID: 29702608 PMC: 6027346. DOI: 10.3390/toxics6020025.


CHIP(-/-)-Mouse Liver: Adiponectin-AMPK-FOXO-Activation Overrides CYP2E1-Elicited JNK1-Activation, Delaying Onset of NASH: Therapeutic Implications.

Kim S, Grenert J, Patterson C, Correia M Sci Rep. 2016; 6:29423.

PMID: 27406999 PMC: 4942616. DOI: 10.1038/srep29423.