» Articles » PMID: 1309955

Could CuB Be the Site of Redox Linkage in Cytochrome C Oxidase?

Overview
Specialty Science
Date 1992 Jan 15
PMID 1309955
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

This paper explores the proton pumping function of cytochrome c oxidase [ferrocytochrome-c:oxygen oxidoreductase (EC 1.9.3.1)] based upon redox linkage at the "high-potential" CuB center. A model is proposed that is derived from a redox-linked ligand exchange mechanism previously described for the CuA site. Qualitative analysis of this mechanism indicates that such a mechanism is feasible. However, the relatively short distance between CuB and cytochrome a3 implies that the uncoupling electron transfers are quite facile. In addition, the position of the CuB center with respect to the inner mitochondrial membrane argues against redox linkage at the CuB site.

Citing Articles

Modulation of the active site conformation by site-directed mutagenesis in cytochrome c oxidase from Paracoccus denitrificans.

Ji H, Das T, Puustinen A, Wikstrom M, Yeh S, Rousseau D J Inorg Biochem. 2010; 104(3):318-23.

PMID: 20056281 PMC: 3418673. DOI: 10.1016/j.jinorgbio.2009.11.011.


Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli.

Hill J, Alben J, Gennis R Proc Natl Acad Sci U S A. 1993; 90(12):5863-7.

PMID: 8516338 PMC: 46823. DOI: 10.1073/pnas.90.12.5863.


Proton translocation in cytochrome c oxidase: redox linkage through proximal ligand exchange on cytochrome a3.

Rousseau D, Ching Y, Wang J J Bioenerg Biomembr. 1993; 25(2):165-76.

PMID: 8389749 DOI: 10.1007/BF00762858.


Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochrome aa3 and cytochrome bo.

Hosler J, Ferguson-Miller S, Calhoun M, Thomas J, Hill J, Lemieux L J Bioenerg Biomembr. 1993; 25(2):121-36.

PMID: 8389745 DOI: 10.1007/BF00762854.


Fluorescence quenching of reconstituted NCD-4-labeled cytochrome c oxidase complex by DOXYL-stearic acids.

Musser S, Larsen R, Chan S Biophys J. 1993; 65(6):2348-59.

PMID: 8312474 PMC: 1225976. DOI: 10.1016/S0006-3495(93)81309-2.


References
1.
Nagai K, Kitagawa T, Morimoto H . Quaternary structures and low frequency molecular vibrations of haems of deoxy and oxyhaemoglobin studied by resonance raman scattering. J Mol Biol. 1980; 136(3):271-89. DOI: 10.1016/0022-2836(80)90374-5. View

2.
Powers L, Chance B, Ching Y, Angiolillo P . Structural features and the reaction mechanism of cytochrome oxidase: iron and copper X-ray absorption fine structure. Biophys J. 1981; 34(3):465-98. PMC: 1327488. DOI: 10.1016/S0006-3495(81)84863-1. View

3.
Varotsis C, Babcock G . Appearance of the v(FeIV = O) vibration from a ferryl-oxo intermediate in the cytochrome oxidase/dioxygen reaction. Biochemistry. 1990; 29(32):7357-62. DOI: 10.1021/bi00484a001. View

4.
Han S, Ching Y, Rousseau D . Cytochrome c oxidase: decay of the primary oxygen intermediate involves direct electron transfer from cytochrome a. Proc Natl Acad Sci U S A. 1990; 87(21):8408-12. PMC: 54965. DOI: 10.1073/pnas.87.21.8408. View

5.
Oliveberg M, Brzezinski P, Malmstrom B . The effect of pH and temperature on the reaction of fully reduced and mixed-valence cytochrome c oxidase with dioxygen. Biochim Biophys Acta. 1989; 977(3):322-8. DOI: 10.1016/s0005-2728(89)80087-8. View