Gurevich V
Int J Mol Sci. 2024; 25(11).
PMID: 38892473
PMC: 11173308.
DOI: 10.3390/ijms25116284.
Zheng C, Weinstein L, Nguyen K, Grewal A, Gurevich E, Gurevich V
Cells. 2023; 12(12).
PMID: 37371033
PMC: 10296906.
DOI: 10.3390/cells12121563.
Zheng C, Weinstein L, Nguyen K, Grewal A, Gurevich E, Gurevich V
bioRxiv. 2023; .
PMID: 37205393
PMC: 10187157.
DOI: 10.1101/2023.05.01.538990.
Jiang H, Galtes D, Wang J, Rockman H
Am J Physiol Cell Physiol. 2022; 323(3):C731-C748.
PMID: 35816644
PMC: 9448338.
DOI: 10.1152/ajpcell.00210.2022.
Seyedabadi M, Gharghabi M, Gurevich E, Gurevich V
Biomolecules. 2021; 11(2).
PMID: 33557162
PMC: 7913897.
DOI: 10.3390/biom11020218.
Beta-Arrestins and Receptor Signaling in the Vascular Endothelium.
Lee C, Viswanathan G, Choi I, Jassal C, Kohlmann T, Rajagopal S
Biomolecules. 2020; 11(1).
PMID: 33374806
PMC: 7824595.
DOI: 10.3390/biom11010009.
Targeting arrestin interactions with its partners for therapeutic purposes.
Gurevich V, Gurevich E
Adv Protein Chem Struct Biol. 2020; 121:169-197.
PMID: 32312421
PMC: 7977737.
DOI: 10.1016/bs.apcsb.2019.11.011.
Plethora of functions packed into 45 kDa arrestins: biological implications and possible therapeutic strategies.
Gurevich V, Gurevich E
Cell Mol Life Sci. 2019; 76(22):4413-4421.
PMID: 31422444
PMC: 11105767.
DOI: 10.1007/s00018-019-03272-5.
GPCR Signaling Regulation: The Role of GRKs and Arrestins.
Gurevich V, Gurevich E
Front Pharmacol. 2019; 10:125.
PMID: 30837883
PMC: 6389790.
DOI: 10.3389/fphar.2019.00125.
The structural basis of the arrestin binding to GPCRs.
Gurevich V, Gurevich E
Mol Cell Endocrinol. 2019; 484:34-41.
PMID: 30703488
PMC: 6377262.
DOI: 10.1016/j.mce.2019.01.019.
Arrestins: Introducing Signaling Bias Into Multifunctional Proteins.
Gurevich V, Chen Q, Gurevich E
Prog Mol Biol Transl Sci. 2018; 160:47-61.
PMID: 30470292
PMC: 6437759.
DOI: 10.1016/bs.pmbts.2018.07.007.
Arrestins: structural disorder creates rich functionality.
Gurevich V, Gurevich E, Uversky V
Protein Cell. 2018; 9(12):986-1003.
PMID: 29453740
PMC: 6251804.
DOI: 10.1007/s13238-017-0501-8.
Phosphorylation of β-arrestin2 at Thr by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs.
Cassier E, Gallay N, Bourquard T, Claeysen S, Bockaert J, Crepieux P
Elife. 2017; 6.
PMID: 28169830
PMC: 5325621.
DOI: 10.7554/eLife.23777.
β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.
Nuber S, Zabel U, Lorenz K, Nuber A, Milligan G, Tobin A
Nature. 2016; 531(7596):661-4.
PMID: 27007855
PMC: 5157050.
DOI: 10.1038/nature17198.
Structural evidence for the role of polar core residue Arg175 in arrestin activation.
Granzin J, Stadler A, Cousin A, Schlesinger R, Batra-Safferling R
Sci Rep. 2015; 5:15808.
PMID: 26510463
PMC: 4625158.
DOI: 10.1038/srep15808.
Arrestins: Critical Players in Trafficking of Many GPCRs.
Gurevich V, Gurevich E
Prog Mol Biol Transl Sci. 2015; 132:1-14.
PMID: 26055052
PMC: 5841159.
DOI: 10.1016/bs.pmbts.2015.02.010.
Beyond traditional pharmacology: new tools and approaches.
Gurevich E, Gurevich V
Br J Pharmacol. 2015; 172(13):3229-41.
PMID: 25572005
PMC: 4500362.
DOI: 10.1111/bph.13066.
Arrestins regulate cell spreading and motility via focal adhesion dynamics.
Cleghorn W, Branch K, Kook S, Arnette C, Bulus N, Zent R
Mol Biol Cell. 2014; 26(4):622-35.
PMID: 25540425
PMC: 4325834.
DOI: 10.1091/mbc.E14-02-0740.
Identification of receptor binding-induced conformational changes in non-visual arrestins.
Zhuo Y, Vishnivetskiy S, Zhan X, Gurevich V, Klug C
J Biol Chem. 2014; 289(30):20991-1002.
PMID: 24867953
PMC: 4110305.
DOI: 10.1074/jbc.M114.560680.
The physical association of the P2Y12 receptor with PAR4 regulates arrestin-mediated Akt activation.
Khan A, Li D, Ibrahim S, Smyth E, Woulfe D
Mol Pharmacol. 2014; 86(1):1-11.
PMID: 24723492
PMC: 4054002.
DOI: 10.1124/mol.114.091595.