» Articles » PMID: 1295662

Energy Metabolism in Developing Brain Cells

Overview
Specialties Pharmacology
Physiology
Date 1992 Jan 1
PMID 1295662
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

During development different energy substrates are available to cells in brain in plentiful supply. The metabolic environment, which is dictated by the milk diet rich in fat, ensures that substrates in addition to glucose are available as fuels. Some substrates serve readily as primary fuels for respiration, whereas other substrates can serve other functions in addition to serving as primary fuels. Primary fuels for respiration serve to supply acetyl CoA directly and as a result always have first priority. With this criteria in mind, a consideration of substrate priority for respiration by developing brain is presented. Many studies in the decade, 1970-1980, in human infants and in the rat pup model show that both glucose and the ketone bodies, acetoacetate and D-(-)-3-hydroxybutyrate, are taken up by brain and used for energy production and as carbon sources for lipogenesis. Products of fat metabolism, free fatty acids, ketone bodies, and glycerol dominate metabolic pools in early development as a consequence of the milk diet. This recognition of a distinctive metabolic environment from the well-fed adult was taken into consideration within the last decade when methods became available to obtain and study each of the major cell populations, neurons, astrocytes, and oligodendrocytes in near homogeneous state in primary cultures. Studies on these cells made it possible to examine the distinctive metabolic properties and capabilities of each cell population to oxidize the metabolites that are available in development. Studies by many investigators on these cell populations show that all three can use glucose and the ketone bodies in respiration and for lipogenesis. Only one cell type, the astrocytes, can beta-oxidize fatty acids such as octanoate. By comparing the production of labeled carbon dioxide from glucose labeled on carbon-1 compared with carbon-6, it is clear that all three cell populations are capable of active hexose monophosphate shunt activity. Neurons and oligodendrocytes are capable of making good use of acetoacetate and D-(-)-3-hydroxybutyrate, whereas the best substrate for astrocytes is fatty acid. Under comparable conditions of incubation with astrocytes, fatty acids serve better than ketones, which in turn serve better than glucose in respiration. Some of the major factors that can explain the differing observations by different investigators on the capacity for substrate oxidation are presented. Over the last decade, astrocytes have captured the attention of neurobiologists because they have special attributes as metabolic support cells for the management of intermediary metabolism in brain.(ABSTRACT TRUNCATED AT 400 WORDS)

Citing Articles

Regulation of PPARα by APP in Alzheimer disease affects the pharmacological modulation of synaptic activity.

Saez-Orellana F, Leroy T, Ribeiro F, Kreis A, Leroy K, Lalloyer F JCI Insight. 2021; 6(16).

PMID: 34228639 PMC: 8410016. DOI: 10.1172/jci.insight.150099.


Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease.

Vieira N, Rito T, Correia-Neves M, Sousa N Mol Neurobiol. 2021; 58(8):4070-4106.

PMID: 33931804 PMC: 8280035. DOI: 10.1007/s12035-021-02388-9.


In-depth quantitative proteomic characterization of organotypic hippocampal slice culture reveals sex-specific differences in biochemical pathways.

Weis S, Souza J, Hoppe J, Firmino M, Auer M, Ataii N Sci Rep. 2021; 11(1):2560.

PMID: 33510253 PMC: 7844295. DOI: 10.1038/s41598-021-82016-7.


Spatially-resolved metabolic profiling of living Drosophila in neurodegenerative conditions using H magic angle spinning NMR.

Yon M, Decoville M, Sarou-Kanian V, Fayon F, Birman S Sci Rep. 2020; 10(1):9516.

PMID: 32528106 PMC: 7289880. DOI: 10.1038/s41598-020-66218-z.


Metabolic regulation of neurodifferentiation in the adult brain.

Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C Cell Mol Life Sci. 2020; 77(13):2483-2496.

PMID: 31912194 PMC: 7320050. DOI: 10.1007/s00018-019-03430-9.