Campos M, Albrecht L
Cancers (Basel). 2024; 16(1).
PMID: 38201444
PMC: 10778546.
DOI: 10.3390/cancers16010016.
Sivadas A, McDonald E, Shuster S, Davis C, Plate L
Adv Biol Regul. 2023; 90:100987.
PMID: 37806136
PMC: 11108229.
DOI: 10.1016/j.jbior.2023.100987.
Sivadas A, McDonald E, Shuster S, Davis C, Plate L
bioRxiv. 2023; .
PMID: 37781627
PMC: 10541129.
DOI: 10.1101/2023.09.19.558525.
Luis C, Guerra-Carvalho B, Braga P, Guedes C, Patricio E, Alves M
Cells. 2023; 12(17).
PMID: 37681855
PMC: 10486438.
DOI: 10.3390/cells12172123.
Maurais A, Weerapana E
RSC Chem Biol. 2022; 3(10):1282-1289.
PMID: 36320891
PMC: 9533414.
DOI: 10.1039/d2cb00183g.
Investigation of glucose catabolism in hypoxic Mcf 7 breast cancer culture.
Bayar I, Bildik A
Cytotechnology. 2021; 73(2):217-232.
PMID: 33927477
PMC: 8035399.
DOI: 10.1007/s10616-021-00459-2.
Resveratrol's Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism.
Brockmueller A, Sameri S, Liskova A, Zhai K, Varghese E, Samuel S
Cancers (Basel). 2021; 13(2).
PMID: 33430318
PMC: 7825813.
DOI: 10.3390/cancers13020188.
RNAi-mediated knockdown of PFK1 decreases the invasive capability and metastasis of nasopharyngeal carcinoma cell line, CNE-2.
Li S, He P, Wang Z, Liang M, Liao W, Huang Y
Cell Cycle. 2021; 20(2):154-165.
PMID: 33404290
PMC: 7889105.
DOI: 10.1080/15384101.2020.1866279.
Breast Cancer Subtypes Underlying EMT-Mediated Catabolic Metabolism.
Cho E, Kim N, Yun J, Cho S, Kim H, In Yook J
Cells. 2020; 9(9).
PMID: 32927665
PMC: 7563728.
DOI: 10.3390/cells9092064.
Shikonin, vitamin K and vitamin K inhibit multiple glycolytic enzymes in MCF-7 cells.
Chen J, Hu X, Cui J
Oncol Lett. 2018; 15(5):7423-7432.
PMID: 29725454
PMC: 5920510.
DOI: 10.3892/ol.2018.8251.
Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells.
Sreedhar A, Zhao Y
Biomed Rep. 2018; 8(1):3-10.
PMID: 29399334
PMC: 5772474.
DOI: 10.3892/br.2017.1022.
The advantage of channeling nucleotides for very processive functions.
Zala D, Schlattner U, Desvignes T, Bobe J, Roux A, Chavrier P
F1000Res. 2017; 6:724.
PMID: 28663786
PMC: 5473427.
DOI: 10.12688/f1000research.11561.2.
Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma.
Coelho R, Calaca I, Celestrini D, Correia-Carneiro A, Costa M, Zancan P
Oncotarget. 2015; 6(30):29375-87.
PMID: 26320188
PMC: 4745733.
DOI: 10.18632/oncotarget.4910.
Differential phosphofructokinase-1 isoenzyme patterns associated with glycolytic efficiency in human breast cancer and paracancer tissues.
Wang G, Xu Z, Wang C, Yao F, Li J, Chen C
Oncol Lett. 2013; 6(6):1701-1706.
PMID: 24260065
PMC: 3834046.
DOI: 10.3892/ol.2013.1599.
Serotonin regulates 6-phosphofructo-1-kinase activity in a PLC-PKC-CaMK II- and Janus kinase-dependent signaling pathway.
Coelho W, Sola-Penna M
Mol Cell Biochem. 2012; 372(1-2):211-20.
PMID: 23010892
DOI: 10.1007/s11010-012-1462-0.
Clotrimazole preferentially inhibits human breast cancer cell proliferation, viability and glycolysis.
Furtado C, Marcondes M, Sola-Penna M, de Souza M, Zancan P
PLoS One. 2012; 7(2):e30462.
PMID: 22347377
PMC: 3275602.
DOI: 10.1371/journal.pone.0030462.
Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis.
Leite T, da Silva D, Coelho R, Zancan P, Sola-Penna M
Biochem J. 2007; 408(1):123-30.
PMID: 17666012
PMC: 2049071.
DOI: 10.1042/BJ20070687.
Mayaro virus infection alters glucose metabolism in cultured cells through activation of the enzyme 6-phosphofructo 1-kinase.
El-Bacha T, Menezes M, Azevedo e Silva M, Sola-Penna M, Da Poian A
Mol Cell Biochem. 2005; 266(1-2):191-8.
PMID: 15646042
DOI: 10.1023/b:mcbi.0000049154.17866.00.