Coutinho A, Hom K, Polli J
Mol Pharm. 2024; 21(12):6153-6165.
PMID: 39482969
PMC: 11615941.
DOI: 10.1021/acs.molpharmaceut.4c00359.
Dernovsek J, Gradisek N, Zajec Z, Urbancic D, Cingl J, Gorican T
RSC Adv. 2024; 14(39):28347-28375.
PMID: 39239280
PMC: 11375794.
DOI: 10.1039/d4ra05878j.
Herlah B, Gorican T, Strasek Benedik N, Golic Grdadolnik S, Sosic I, Perdih A
Comput Struct Biotechnol J. 2024; 23:2995-3018.
PMID: 39135887
PMC: 11318567.
DOI: 10.1016/j.csbj.2024.06.037.
Zajec Z, Dernovsek J, Cingl J, Ogris I, Gedgaudas M, Zubriene A
J Med Chem. 2024; 67(15):12984-13018.
PMID: 39042910
PMC: 11320583.
DOI: 10.1021/acs.jmedchem.4c00932.
Huynh C, Mavliutova L, Sparrman T, Sellergren B, Irgum K
ACS Omega. 2023; 8(46):44238-44249.
PMID: 38027366
PMC: 10666243.
DOI: 10.1021/acsomega.3c06836.
Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing.
Franco-Ulloa S, Cesari A, Riccardi L, De Biasi F, Rosa-Gastaldo D, Mancin F
J Phys Chem Lett. 2023; 14(30):6912-6918.
PMID: 37498189
PMC: 10405269.
DOI: 10.1021/acs.jpclett.3c01005.
Endogenous modulators of neurotrophin signaling: Landscape of the transient ATP-NGF interactions.
Paoletti F, Merzel F, Cassetta A, Ogris I, Covaceuszach S, Grdadolnik J
Comput Struct Biotechnol J. 2021; 19:2938-2949.
PMID: 34136093
PMC: 8164016.
DOI: 10.1016/j.csbj.2021.05.009.
Behavior of glycolylated sialoglycans in the binding pockets of murine and human CD22.
Di Carluccio C, Forgione R, Montefiori M, Civera M, Sattin S, Smaldone G
iScience. 2021; 24(1):101998.
PMID: 33490906
PMC: 7811138.
DOI: 10.1016/j.isci.2020.101998.
Unveiling Molecular Recognition of Sialoglycans by Human Siglec-10.
Forgione R, Di Carluccio C, Guzman-Caldentey J, Gaglione R, Battista F, Chiodo F
iScience. 2020; 23(6):101231.
PMID: 32629603
PMC: 7306591.
DOI: 10.1016/j.isci.2020.101231.
Unveiling the interaction profile of rosmarinic acid and its bioactive substructures with serum albumin.
Papaemmanouil C, Chatziathanasiadou M, Chatzigiannis C, Chontzopoulou E, Mavromoustakos T, Golic Grdadolnik S
J Enzyme Inhib Med Chem. 2020; 35(1):786-804.
PMID: 32200650
PMC: 7144280.
DOI: 10.1080/14756366.2020.1740923.
Ranking Hits From Saturation Transfer Difference Nuclear Magnetic Resonance-Based Fragment Screening.
Aretz J, Rademacher C
Front Chem. 2019; 7:215.
PMID: 31032246
PMC: 6473174.
DOI: 10.3389/fchem.2019.00215.
Evaluation of ligand-based NMR screening methods to characterize small molecule binding to HIV-1 glycoprotein-41.
Chu S, Zhou G, Gochin M
Org Biomol Chem. 2017; 15(24):5210-5219.
PMID: 28590477
PMC: 5530879.
DOI: 10.1039/c7ob00954b.
Synthesis and biological evaluation of pyrazolopyrimidines as potential antibacterial agents.
Goshu G, Ghose D, Bain J, Pierce P, Begley D, Hewitt S
Bioorg Med Chem Lett. 2015; 25(24):5699-704.
PMID: 26584881
PMC: 4764408.
DOI: 10.1016/j.bmcl.2015.10.096.
Fluorinated Carbohydrates as Lectin Ligands: (19)F-Based Direct STD Monitoring for Detection of Anomeric Selectivity.
Ribeiro J, Diercks T, Jimenez-Barbero J, Andre S, Gabius H, Canada F
Biomolecules. 2015; 5(4):3177-92.
PMID: 26580665
PMC: 4693274.
DOI: 10.3390/biom5043177.
Comparing binding modes of analogous fragments using NMR in fragment-based drug design: application to PRDX5.
Aguirre C, Ten Brink T, Guichou J, Cala O, Krimm I
PLoS One. 2014; 9(7):e102300.
PMID: 25025339
PMC: 4099364.
DOI: 10.1371/journal.pone.0102300.
Determining the Role of the Aromatic Ring of N-Arylmethyl ent-conduramine F-1 in their Interactions with α-Glucosidases by Saturation Transfer Difference NMR Spectroscopy Experiments.
Hernandez Daranas A, Koteich Khatib S, Lysek R, Vogel P, Gavin J
ChemistryOpen. 2014; 1(1):13-6.
PMID: 24551486
PMC: 3922434.
DOI: 10.1002/open.201100004.
Investigation of the binding and cleavage characteristics of N1 neuraminidases from avian, seasonal, and pandemic influenza viruses using saturation transfer difference nuclear magnetic resonance.
Garcia J, Lai J, Haselhorst T, Choy K, Yen H, Peiris J
Influenza Other Respir Viruses. 2013; 8(2):235-42.
PMID: 24118862
PMC: 4186472.
DOI: 10.1111/irv.12184.
The binding mode of second-generation sulfonamide inhibitors of MurD: clues for rational design of potent MurD inhibitors.
Simcic M, Sosic I, Hodoscek M, Barreteau H, Blanot D, Gobec S
PLoS One. 2013; 7(12):e52817.
PMID: 23285193
PMC: 3527612.
DOI: 10.1371/journal.pone.0052817.
Combined in silico and experimental approach for drug design: the binding mode of peptidic and non-peptidic inhibitors to hsp90 N-terminal domain.
Tomaselli S, Meli M, Plescia J, Zetta L, Altieri D, Colombo G
Chem Biol Drug Des. 2010; 76(5):382-91.
PMID: 20925690
PMC: 2953720.
DOI: 10.1111/j.1747-0285.2010.01015.x.
Fragment-based discovery of novel thymidylate synthase leads by NMR screening and group epitope mapping.
Begley D, Zheng S, Varani G
Chem Biol Drug Des. 2010; 76(3):218-33.
PMID: 20626411
PMC: 2918687.
DOI: 10.1111/j.1747-0285.2010.01010.x.