Kim D, Diatlova E, Zharkov T, Melentyev V, Yudkina A, Endutkin A
Int J Mol Sci. 2024; 25(1).
PMID: 38203235
PMC: 10778768.
DOI: 10.3390/ijms25010064.
Franck C, Stephane G, Julien C, Virginie G, Martine G, Norbert G
Nucleic Acids Res. 2022; 50(19):11072-11092.
PMID: 36300625
PMC: 9638937.
DOI: 10.1093/nar/gkac932.
Diatlova E, Mechetin G, Zharkov D
Cells. 2022; 11(20).
PMID: 36291061
PMC: 9600533.
DOI: 10.3390/cells11203192.
Torgasheva N, Diatlova E, Grin I, Endutkin A, Mechetin G, Vokhtantsev I
Int J Mol Sci. 2022; 23(13).
PMID: 35806289
PMC: 9266487.
DOI: 10.3390/ijms23137286.
Kakhkharova Z, Zharkov D, Grin I
Int J Mol Sci. 2022; 23(4).
PMID: 35216329
PMC: 8879280.
DOI: 10.3390/ijms23042212.
Mouse Embryonic Fibroblasts Isolated From Nthl1 D227Y Knockin Mice Exhibit Defective DNA Repair and Increased Genome Instability.
Marsden C, Das L, Nottoli T, Kathe S, Doublie S, Wallace S
DNA Repair (Amst). 2021; 109:103247.
PMID: 34826736
PMC: 8787541.
DOI: 10.1016/j.dnarep.2021.103247.
Alleviation of C⋅C Mismatches in DNA by the Fpg Protein.
Nigatu Tesfahun A, Alexeeva M, Tomkuviene M, Arshad A, Guragain P, Klungland A
Front Microbiol. 2021; 12:608839.
PMID: 34276575
PMC: 8278400.
DOI: 10.3389/fmicb.2021.608839.
The shaping of a molecular linguist: How a career studying DNA energetics revealed the language of molecular communication.
Breslauer K
J Biol Chem. 2021; 296:100522.
PMID: 34237886
PMC: 8058554.
DOI: 10.1016/j.jbc.2021.100522.
The Gene Is Activated to Alleviate Mutagenesis by an Oxidized Deoxynucleoside.
Grosvik K, Nigatu Tesfahun A, Muruzabal-Lecumberri I, Haugland G, Leiros I, Ruoff P
Front Microbiol. 2020; 11:263.
PMID: 32158436
PMC: 7051996.
DOI: 10.3389/fmicb.2020.00263.
Structural basis for recognition and repair of the 3'-phosphate by NExo, a base excision DNA repair nuclease from Neisseria meningitidis.
Silhan J, Zhao Q, Boura E, Thomson H, Forster A, Tang C
Nucleic Acids Res. 2018; 46(22):11980-11989.
PMID: 30329088
PMC: 6294502.
DOI: 10.1093/nar/gky934.
Molecular dynamics simulation of the opposite-base preference and interactions in the active site of formamidopyrimidine-DNA glycosylase.
Popov A, Endutkin A, Vorobjev Y, Zharkov D
BMC Struct Biol. 2017; 17(1):5.
PMID: 28482831
PMC: 5422863.
DOI: 10.1186/s12900-017-0075-y.
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics.
Dizdaroglu M, Coskun E, Jaruga P
Mutat Res Rev Mutat Res. 2017; 771:99-127.
PMID: 28342455
PMC: 7451025.
DOI: 10.1016/j.mrrev.2017.02.001.
Neil3 induced neurogenesis protects against prion disease during the clinical phase.
Jalland C, Scheffler K, Benestad S, Moldal T, Ersdal C, Gunnes G
Sci Rep. 2016; 6:37844.
PMID: 27886261
PMC: 5122945.
DOI: 10.1038/srep37844.
An integrated model of transcription factor diffusion shows the importance of intersegmental transfer and quaternary protein structure for target site finding.
Schmidt H, Sewitz S, Andrews S, Lipkow K
PLoS One. 2014; 9(10):e108575.
PMID: 25333780
PMC: 4204827.
DOI: 10.1371/journal.pone.0108575.
Zinc finger oxidation of Fpg/Nei DNA glycosylases by 2-thioxanthine: biochemical and X-ray structural characterization.
Biela A, Coste F, Culard F, Guerin M, Goffinont S, Gasteiger K
Nucleic Acids Res. 2014; 42(16):10748-61.
PMID: 25143530
PMC: 4176347.
DOI: 10.1093/nar/gku613.
Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases.
Nelson S, Dunn A, Kathe S, Warshaw D, Wallace S
Proc Natl Acad Sci U S A. 2014; 111(20):E2091-9.
PMID: 24799677
PMC: 4034194.
DOI: 10.1073/pnas.1400386111.
A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications.
Burroughs A, Aravind L
RNA Biol. 2014; 11(4):360-72.
PMID: 24646681
PMC: 4075521.
DOI: 10.4161/rna.28302.
Structural investigation of a viral ortholog of human NEIL2/3 DNA glycosylases.
Prakash A, Eckenroth B, Averill A, Imamura K, Wallace S, Doublie S
DNA Repair (Amst). 2013; 12(12):1062-71.
PMID: 24120312
PMC: 3856876.
DOI: 10.1016/j.dnarep.2013.09.004.
Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin.
Krokeide S, Laerdahl J, Salah M, Luna L, Cederkvist F, Fleming A
DNA Repair (Amst). 2013; 12(12):1159-64.
PMID: 23755964
PMC: 3840045.
DOI: 10.1016/j.dnarep.2013.04.026.
Structural characterization of a mouse ortholog of human NEIL3 with a marked preference for single-stranded DNA.
Liu M, Imamura K, Averill A, Wallace S, Doublie S
Structure. 2013; 21(2):247-56.
PMID: 23313161
PMC: 3856655.
DOI: 10.1016/j.str.2012.12.008.