» Articles » PMID: 12878698

N- and C-terminal Domains of Beta-catenin, Respectively, Are Required to Initiate and Shape Axon Arbors of Retinal Ganglion Cells in Vivo

Overview
Journal J Neurosci
Specialty Neurology
Date 2003 Jul 25
PMID 12878698
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

We used deletion mutants to study beta-catenin function in axon arborization of retinal ganglion cells (RGCs) in live Xenopus laevis tadpoles. A deletion mutant betacatDeltaARM consists of the N- and C-terminal domains of wild-type beta-catenin that contain, respectively, alpha-catenin and postsynaptic density-95 (PSD-95)/discs large (Dlg)/zona occludens-1 (ZO-1) (PDZ) binding sites but lacks the central armadillo repeat region that binds cadherins and other proteins. Expression of DeltaARM in RGCs of live tadpoles perturbed axon arborization in two distinct ways: some RGC axons did not form arbors, whereas the remaining RGC axons formed arbors with abnormally long and tangled branches. Expression of the N- and C-terminal domains of beta-catenin separately in RGCs resulted in segregation of these two phenotypes. The axons of RGCs overexpressing the N-terminal domain of beta-catenin developed no or very few branches, whereas axons of RGCs overexpressing the C-terminal domain of beta-catenin formed arbors with long, tangled branches. Additional analysis revealed that the axons of RGCs that did not form arbors after overexpression of DeltaARM or the N-terminal domain of beta-catenin were frequently mistargeted within the tectum. These results suggest that interactions of the N-terminal domain of beta-catenin with alpha-catenin and of the C-terminal domain with PDZ domain-containing proteins are required, respectively, to initiate and shape axon arbors of RGCs in vivo.

Citing Articles

β-Catenin and SOX2 Interaction Regulate Visual Experience-Dependent Cell Homeostasis in the Developing Thalamus.

Gao J, Lu Y, Luo Y, Duan X, Chen P, Zhang X Int J Mol Sci. 2023; 24(17).

PMID: 37686400 PMC: 10488257. DOI: 10.3390/ijms241713593.


Visualizing Morphogenesis with the Processing Programming Language.

Patel A, Bains A, Millet R, Elul T J Biocommun. 2022; 41(1):e4.

PMID: 36405413 PMC: 9138804. DOI: 10.5210/jbc.v41i1.7314.


Beyond Trophic Factors: Exploiting the Intrinsic Regenerative Properties of Adult Neurons.

Duraikannu A, Krishnan A, Chandrasekhar A, Zochodne D Front Cell Neurosci. 2019; 13:128.

PMID: 31024258 PMC: 6460947. DOI: 10.3389/fncel.2019.00128.


Expression and Manipulation of the APC-β-Catenin Pathway During Peripheral Neuron Regeneration.

Duraikannu A, Martinez J, Chandrasekhar A, Zochodne D Sci Rep. 2018; 8(1):13197.

PMID: 30181617 PMC: 6123411. DOI: 10.1038/s41598-018-31167-1.


Decreased Axon Caliber Underlies Loss of Fiber Tract Integrity, Disproportional Reductions in White Matter Volume, and Microcephaly in Angelman Syndrome Model Mice.

Judson M, Burette A, Thaxton C, Pribisko A, Shen M, Rumple A J Neurosci. 2017; 37(31):7347-7361.

PMID: 28663201 PMC: 5546107. DOI: 10.1523/JNEUROSCI.0037-17.2017.


References
1.
Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O, Takeichi M . Cadherin regulates dendritic spine morphogenesis. Neuron. 2002; 35(1):77-89. DOI: 10.1016/s0896-6273(02)00748-1. View

2.
Schneider S, Finnerty J, Martindale M . Protein evolution: structure-function relationships of the oncogene beta-catenin in the evolution of multicellular animals. J Exp Zool B Mol Dev Evol. 2003; 295(1):25-44. DOI: 10.1002/jez.b.6. View

3.
Holt C . Does timing of axon outgrowth influence initial retinotectal topography in Xenopus?. J Neurosci. 1984; 4(4):1130-52. PMC: 6564775. View

4.
Sakaguchi D, Murphey R . Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations. J Neurosci. 1985; 5(12):3228-45. PMC: 6565231. View

5.
Holt C, Garlick N, Cornel E . Lipofection of cDNAs in the embryonic vertebrate central nervous system. Neuron. 1990; 4(2):203-14. DOI: 10.1016/0896-6273(90)90095-w. View