Im J, Choi H, An H, Kwon T, Hong M
Materials (Basel). 2023; 16(16).
PMID: 37630008
PMC: 10456429.
DOI: 10.3390/ma16165717.
Stoilov M, Stoilov L, Enkling N, Stark H, Winter J, Marder M
J Funct Biomater. 2022; 13(3).
PMID: 36135578
PMC: 9503392.
DOI: 10.3390/jfb13030143.
Rothammer B, Neusser K, Marian M, Bartz M, Krauss S, Bohm T
Polymers (Basel). 2021; 13(12).
PMID: 34208302
PMC: 8231215.
DOI: 10.3390/polym13121952.
Scandurra R, Scotto dAbusco A, Longo G
Nanomaterials (Basel). 2020; 10(6).
PMID: 32599955
PMC: 7353133.
DOI: 10.3390/nano10061233.
Cruz N, Martins M, Santos J, Mur J, Tondela J
Materials (Basel). 2020; 13(9).
PMID: 32397319
PMC: 7254327.
DOI: 10.3390/ma13092177.
The Effect of Ultraviolet Photofunctionalization on a Titanium Dental Implant with Machined Surface: An In Vitro and In Vivo Study.
Lee J, Jo Y, Choi J, Seol Y, Lee Y, Ku Y
Materials (Basel). 2019; 12(13).
PMID: 31261627
PMC: 6650865.
DOI: 10.3390/ma12132078.
Sandblasting and fibronectin-derived peptide immobilization on titanium surface increase adhesion and differentiation of osteoblast-like cells (MC3T3-E1).
Pramono S, Pugdee K, Suwanprateep J, Koontongkaew S
J Dent Sci. 2019; 11(4):427-436.
PMID: 30895008
PMC: 6395237.
DOI: 10.1016/j.jds.2016.07.004.
In vitro comparison of two titanium dental implant surface treatments: 3M™ESPE™ MDIs versus Ankylos®.
Dhaliwal J, Marulanda J, Li J, Alebrahim S, Feine J, Murshed M
Int J Implant Dent. 2017; 3(1):27.
PMID: 28656566
PMC: 5487315.
DOI: 10.1186/s40729-017-0083-5.
Topographic characterisation of dental implants for commercial use.
Mendoza-Arnau A, Vallecillo-Capilla M, Cabrerizo-Vilchez M, Rosales-Leal J
Med Oral Patol Oral Cir Bucal. 2016; 21(5):e631-6.
PMID: 27475680
PMC: 5005103.
DOI: 10.4317/medoral.20333.
Evaluation of osseous integration of PVD-silver-coated hip prostheses in a canine model.
Hauschild G, Hardes J, Gosheger G, Stoeppeler S, Ahrens H, Blaske F
Biomed Res Int. 2015; 2015:292406.
PMID: 25695057
PMC: 4324895.
DOI: 10.1155/2015/292406.
Early healing events around titanium implant devices with different surface microtopography: a pilot study in an in vivo rabbit model.
Orsini E, Salgarello S, Martini D, Bacchelli B, Quaranta M, Pisoni L
ScientificWorldJournal. 2012; 2012:349842.
PMID: 22545015
PMC: 3322675.
DOI: 10.1100/2012/349842.
Immobilized-OPG-Fc on a titanium surface inhibits RANKL-dependent osteoclast differentiation in vitro.
Makihira S, Mine Y, Nikawa H, Shuto T, Kosaka E, Sugiyama M
J Mater Sci Mater Med. 2009; 21(2):647-53.
PMID: 19834789
DOI: 10.1007/s10856-009-3891-1.
The role of phospholipase D in osteoblast response to titanium surface microstructure.
Fang M, Olivares-Navarrete R, Wieland M, Cochran D, Boyan B, Schwartz Z
J Biomed Mater Res A. 2009; 93(3):897-909.
PMID: 19705469
PMC: 4287411.
DOI: 10.1002/jbm.a.32596.
Effect of micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo.
Schwartz Z, Raz P, Zhao G, Barak Y, Tauber M, Yao H
J Bone Joint Surg Am. 2008; 90(11):2485-98.
PMID: 18978418
PMC: 2663328.
DOI: 10.2106/JBJS.G.00499.
Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide.
Rivera-Denizard O, Diffoot-Carlo N, Navas V, Sundaram P
J Mater Sci Mater Med. 2007; 19(1):153-8.
PMID: 17597368
DOI: 10.1007/s10856-006-0039-4.
Surface modification of titanium implants using bioactive glasses with air abrasion technologies.
Koller G, Cook R, Thompson I, Watson T, Di Silvio L
J Mater Sci Mater Med. 2007; 18(12):2291-6.
PMID: 17562133
DOI: 10.1007/s10856-007-3137-z.
Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography.
Zhao G, Raines A, Wieland M, Schwartz Z, Boyan B
Biomaterials. 2007; 28(18):2821-9.
PMID: 17368532
PMC: 2754822.
DOI: 10.1016/j.biomaterials.2007.02.024.
Statistical demonstration of the relative effect of surface chemistry and roughness on human osteoblast short-term adhesion.
Anselme K, Bigerelle M
J Mater Sci Mater Med. 2006; 17(5):471-9.
PMID: 16688588
DOI: 10.1007/s10856-006-8475-8.