Yoshida A, Hikosaka O
bioRxiv. 2025; .
PMID: 39763854
PMC: 11703221.
DOI: 10.1101/2024.12.25.630331.
Chinta S, Pluta S
Nat Commun. 2023; 14(1):6112.
PMID: 37777516
PMC: 10542789.
DOI: 10.1038/s41467-023-41755-z.
Li H, Jin X
Elife. 2023; 12.
PMID: 37751468
PMC: 10522336.
DOI: 10.7554/eLife.87644.
Li H, Jin X
bioRxiv. 2023; .
PMID: 36993546
PMC: 10055198.
DOI: 10.1101/2023.03.20.533567.
Castro-Alamancos M, Keller A
Scholarpedia J. 2023; 6(6).
PMID: 36937114
PMC: 10022435.
DOI: 10.4249/scholarpedia.7274.
Ameliorating Hemianopia with Multisensory Training.
Rowland B, Bushnell C, Duncan P, Stein B
J Neurosci. 2023; 43(6):1018-1026.
PMID: 36604169
PMC: 9908311.
DOI: 10.1523/JNEUROSCI.0962-22.2022.
Virally encoded connectivity transgenic overlay RNA sequencing (VECTORseq) defines projection neurons involved in sensorimotor integration.
Cheung V, Chung P, Bjorni M, Shvareva V, Lopez Y, Feinberg E
Cell Rep. 2021; 37(12):110131.
PMID: 34936877
PMC: 8719358.
DOI: 10.1016/j.celrep.2021.110131.
Striatal indirect pathway mediates exploration via collicular competition.
Lee J, Sabatini B
Nature. 2021; 599(7886):645-649.
PMID: 34732888
PMC: 10281058.
DOI: 10.1038/s41586-021-04055-4.
Transforming absolute value to categorical choice in primate superior colliculus during value-based decision making.
Zhang B, Kan J, Yang M, Wang X, Tu J, Dorris M
Nat Commun. 2021; 12(1):3410.
PMID: 34099726
PMC: 8184840.
DOI: 10.1038/s41467-021-23747-z.
Direct and indirect pathways for choosing objects and actions.
Hikosaka O, Kim H, Amita H, Yasuda M, Isoda M, Tachibana Y
Eur J Neurosci. 2018; 49(5):637-645.
PMID: 29473660
PMC: 6107440.
DOI: 10.1111/ejn.13876.
Integrating Brain and Biomechanical Models-A New Paradigm for Understanding Neuro-muscular Control.
James S, Papapavlou C, Blenkinsop A, Cope A, Anderson S, Moustakas K
Front Neurosci. 2018; 12:39.
PMID: 29467606
PMC: 5808253.
DOI: 10.3389/fnins.2018.00039.
A Role for the Superior Colliculus in Decision Criteria.
Crapse T, Lau H, Basso M
Neuron. 2018; 97(1):181-194.e6.
PMID: 29301100
PMC: 7266089.
DOI: 10.1016/j.neuron.2017.12.006.
Evidence for a task-dependent switch in subthalamo-nigral basal ganglia signaling.
Jantz J, Watanabe M, Levy R, Munoz D
Nat Commun. 2017; 8(1):1039.
PMID: 29051496
PMC: 5715140.
DOI: 10.1038/s41467-017-01023-3.
To Wait or Not to Wait-Separate Mechanisms in the Oculomotor Circuit of Basal Ganglia.
Yasuda M, Hikosaka O
Front Neuroanat. 2017; 11:35.
PMID: 28443002
PMC: 5387073.
DOI: 10.3389/fnana.2017.00035.
Color-Change Detection Activity in the Primate Superior Colliculus.
Herman J, Krauzlis R
eNeuro. 2017; 4(2).
PMID: 28413825
PMC: 5388837.
DOI: 10.1523/ENEURO.0046-17.2017.
Mechanisms of saccade suppression revealed in the anti-saccade task.
Coe B, Munoz D
Philos Trans R Soc Lond B Biol Sci. 2017; 372(1718).
PMID: 28242726
PMC: 5332851.
DOI: 10.1098/rstb.2016.0192.
The effects of unilateral versus bilateral subthalamic nucleus deep brain stimulation on prosaccades and antisaccades in Parkinson's disease.
Goelz L, David F, Sweeney J, Vaillancourt D, Poizner H, Verhagen Metman L
Exp Brain Res. 2016; 235(2):615-626.
PMID: 27844097
PMC: 5274560.
DOI: 10.1007/s00221-016-4830-2.
Basal Ganglia Output Controls Active Avoidance Behavior.
Hormigo S, Vega-Flores G, Castro-Alamancos M
J Neurosci. 2016; 36(40):10274-10284.
PMID: 27707965
PMC: 5050325.
DOI: 10.1523/JNEUROSCI.1842-16.2016.
Conflict Resolution as Near-Threshold Decision-Making: A Spiking Neural Circuit Model with Two-Stage Competition for Antisaccadic Task.
Lo C, Wang X
PLoS Comput Biol. 2016; 12(8):e1005081.
PMID: 27551824
PMC: 4995026.
DOI: 10.1371/journal.pcbi.1005081.
The functional logic of corticostriatal connections.
Shipp S
Brain Struct Funct. 2016; 222(2):669-706.
PMID: 27412682
PMC: 5334428.
DOI: 10.1007/s00429-016-1250-9.