Tan Z, Luo J, Xu X, Jia W, Li J, Chen L
ACS Omega. 2024; 9(50):49121-49131.
PMID: 39713679
PMC: 11656371.
DOI: 10.1021/acsomega.4c05072.
Zhao H, Zhang Z, Nair S, Li H, He C, Shi Q
Glob Chang Biol. 2024; 30(11):e17570.
PMID: 39600212
PMC: 11599910.
DOI: 10.1111/gcb.17570.
Bohutskyi P, Pomraning K, Jenkins J, Kim Y, Poirier B, Betenbaugh M
Sci Rep. 2024; 14(1):25303.
PMID: 39455633
PMC: 11511929.
DOI: 10.1038/s41598-024-74743-4.
Bowyer F, Wood R, Yilales M
Sci Adv. 2024; 10(31):eado6462.
PMID: 39083611
PMC: 11290527.
DOI: 10.1126/sciadv.ado6462.
Jiao N, Luo T, Chen Q, Zhao Z, Xiao X, Liu J
Nat Rev Microbiol. 2024; 22(7):408-419.
PMID: 38491185
DOI: 10.1038/s41579-024-01018-0.
Organic carbon cycling and black shale deposition: an Earth System Science perspective.
Jin Z, Wang X, Wang H, Ye Y, Zhang S
Natl Sci Rev. 2023; 10(11):nwad243.
PMID: 37900193
PMC: 10612131.
DOI: 10.1093/nsr/nwad243.
Sulfate triple-oxygen-isotope evidence confirming oceanic oxygenation 570 million years ago.
Wang H, Peng Y, Li C, Cao X, Cheng M, Bao H
Nat Commun. 2023; 14(1):4315.
PMID: 37463883
PMC: 10354052.
DOI: 10.1038/s41467-023-39962-9.
A Great late Ediacaran ice age.
Wang R, Shen B, Lang X, Wen B, Mitchell R, Ma H
Natl Sci Rev. 2023; 10(8):nwad117.
PMID: 37389143
PMC: 10306365.
DOI: 10.1093/nsr/nwad117.
Uncovering the Ediacaran phosphorus cycle.
Dodd M, Shi W, Li C, Zhang Z, Cheng M, Gu H
Nature. 2023; 618(7967):974-980.
PMID: 37258677
DOI: 10.1038/s41586-023-06077-6.
Proterozoic supercontinent break-up as a driver for oxygenation events and subsequent carbon isotope excursions.
Eguchi J, Diamond C, Lyons T
PNAS Nexus. 2023; 1(2):pgac036.
PMID: 36713325
PMC: 9802223.
DOI: 10.1093/pnasnexus/pgac036.
Extreme variability in atmospheric oxygen levels in the late Precambrian.
Krause A, Mills B, Merdith A, Lenton T, Poulton S
Sci Adv. 2022; 8(41):eabm8191.
PMID: 36240275
PMC: 9565794.
DOI: 10.1126/sciadv.abm8191.
Extensive primary production promoted the recovery of the Ediacaran Shuram excursion.
Canadas F, Papineau D, Leng M, Li C
Nat Commun. 2022; 13(1):148.
PMID: 35013337
PMC: 8748710.
DOI: 10.1038/s41467-021-27812-5.
Cracking the superheavy pyrite enigma: possible roles of volatile organosulfur compound emission.
Lang X, Zhao Z, Ma H, Huang K, Li S, Zhou C
Natl Sci Rev. 2021; 8(10):nwab034.
PMID: 34858606
PMC: 8566178.
DOI: 10.1093/nsr/nwab034.
A largely invariant marine dissolved organic carbon reservoir across Earth's history.
Fakhraee M, Tarhan L, Planavsky N, Reinhard C
Proc Natl Acad Sci U S A. 2021; 118(40).
PMID: 34580216
PMC: 8501802.
DOI: 10.1073/pnas.2103511118.
Asymmetry of extreme Cenozoic climate-carbon cycle events.
Arnscheidt C, Rothman D
Sci Adv. 2021; 7(33).
PMID: 34380621
PMC: 8357229.
DOI: 10.1126/sciadv.abg6864.
Sulfurization of dissolved organic matter in the anoxic water column of the Black Sea.
Gomez-Saez G, Dittmar T, Holtappels M, Pohlabeln A, Lichtschlag A, Schnetger B
Sci Adv. 2021; 7(25).
PMID: 34134989
PMC: 8208715.
DOI: 10.1126/sciadv.abf6199.
Carbon cycle inverse modeling suggests large changes in fractional organic burial are consistent with the carbon isotope record and may have contributed to the rise of oxygen.
Krissansen-Totton J, Kipp M, Catling D
Geobiology. 2021; 19(4):342-363.
PMID: 33764615
PMC: 8359855.
DOI: 10.1111/gbi.12440.
A unified theory for organic matter accumulation.
Zakem E, Cael B, Levine N
Proc Natl Acad Sci U S A. 2021; 118(6).
PMID: 33536337
PMC: 8017682.
DOI: 10.1073/pnas.2016896118.
Ancient life and moving fluids.
Gibson B, Furbish D, Rahman I, Schmeeckle M, Laflamme M, Darroch S
Biol Rev Camb Philos Soc. 2020; 96(1):129-152.
PMID: 32959981
PMC: 7821342.
DOI: 10.1111/brv.12649.
The effects of marine eukaryote evolution on phosphorus, carbon and oxygen cycling across the Proterozoic-Phanerozoic transition.
Lenton T, Daines S
Emerg Top Life Sci. 2020; 2(2):267-278.
PMID: 32412617
PMC: 7289021.
DOI: 10.1042/ETLS20170156.