Guo Y, Verma B, Shrestha M, Marshak-Rothstein A, Gregory-Ksander M
Res Sq. 2024; .
PMID: 38947028
PMC: 11213175.
DOI: 10.21203/rs.3.rs-4409426/v1.
Xia Q, Zhang D
Mol Med Rep. 2024; 29(5).
PMID: 38516770
PMC: 10975112.
DOI: 10.3892/mmr.2024.13207.
Cen L, Park K, So K
Clin Exp Ophthalmol. 2023; 51(6):627-641.
PMID: 37317890
PMC: 10519420.
DOI: 10.1111/ceo.14259.
Rodrigo M, Martinez-Rincon T, Subias M, Mendez-Martinez S, Pablo L, Polo V
Invest Ophthalmol Vis Sci. 2021; 62(13):9.
PMID: 34643665
PMC: 8525827.
DOI: 10.1167/iovs.62.13.9.
Pang I, Clark A
Prog Retin Eye Res. 2019; 75:100799.
PMID: 31557521
PMC: 7085984.
DOI: 10.1016/j.preteyeres.2019.100799.
A murine glaucoma model induced by rapid in vivo photopolymerization of hyaluronic acid glycidyl methacrylate.
Guo C, Qu X, Rangaswamy N, Leehy B, Xiang C, Rice D
PLoS One. 2018; 13(6):e0196529.
PMID: 29949582
PMC: 6021085.
DOI: 10.1371/journal.pone.0196529.
Caspases in retinal ganglion cell death and axon regeneration.
Thomas C, Berry M, Logan A, Blanch R, Ahmed Z
Cell Death Discov. 2018; 3:17032.
PMID: 29675270
PMC: 5903394.
DOI: 10.1038/cddiscovery.2017.32.
Methods to Induce Chronic Ocular Hypertension: Reliable Rodent Models as a Platform for Cell Transplantation and Other Therapies.
Dey A, Manthey A, Chiu K, Do C
Cell Transplant. 2018; 27(2):213-229.
PMID: 29637819
PMC: 5898687.
DOI: 10.1177/0963689717724793.
Modulation of the Immune System for the Treatment of Glaucoma.
Bell K, Und Hohenstein-Blaul N, Teister J, Grus F
Curr Neuropharmacol. 2017; 16(7):942-958.
PMID: 28730968
PMC: 6120111.
DOI: 10.2174/1570159X15666170720094529.
Retinal Cell Degeneration in Animal Models.
Niwa M, Aoki H, Hirata A, Tomita H, Green P, Hara A
Int J Mol Sci. 2016; 17(1).
PMID: 26784179
PMC: 4730351.
DOI: 10.3390/ijms17010110.
MicroRNA Expression in the Glaucomatous Retina.
Jayaram H, Cepurna W, Johnson E, Morrison J
Invest Ophthalmol Vis Sci. 2016; 56(13):7971-82.
PMID: 26720444
PMC: 4684194.
DOI: 10.1167/iovs.15-18088.
Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death.
Choudhury S, Liu Y, Clark A, Pang I
Mol Neurodegener. 2015; 10:40.
PMID: 26306916
PMC: 4550044.
DOI: 10.1186/s13024-015-0039-2.
Retina Is Protected by Neuroserpin from Ischemic/Reperfusion-Induced Injury Independent of Tissue-Type Plasminogen Activator.
Gu R, Fu L, Jiang C, Xu Y, Wang X, Yu J
PLoS One. 2015; 10(7):e0130440.
PMID: 26176694
PMC: 4503687.
DOI: 10.1371/journal.pone.0130440.
Induction of autophagy in rats upon overexpression of wild-type and mutant optineurin gene.
Ying H, Turturro S, Nguyen T, Shen X, Zelkha R, Johnson E
BMC Cell Biol. 2015; 16:14.
PMID: 25943884
PMC: 4429416.
DOI: 10.1186/s12860-015-0060-x.
Apoptotic retinal ganglion cell death in an autoimmune glaucoma model is accompanied by antibody depositions.
Joachim S, Mondon C, Gramlich O, Grus F, Dick H
J Mol Neurosci. 2013; 52(2):216-24.
PMID: 24091788
DOI: 10.1007/s12031-013-0125-2.
VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma.
Foxton R, Finkelstein A, Vijay S, Dahlmann-Noor A, Khaw P, Morgan J
Am J Pathol. 2013; 182(4):1379-90.
PMID: 23416159
PMC: 3608027.
DOI: 10.1016/j.ajpath.2012.12.032.
Electroretinography in streptozotocin diabetic rats following acute intraocular pressure elevation.
Kohzaki K, Vingrys A, Armitage J, Bui B
Graefes Arch Clin Exp Ophthalmol. 2012; 251(2):529-35.
PMID: 23180237
DOI: 10.1007/s00417-012-2212-4.
Neuroprotection in glaucoma.
Vasudevan S, Gupta V, Crowston J
Indian J Ophthalmol. 2010; 59 Suppl:S102-13.
PMID: 21150020
PMC: 3038513.
DOI: 10.4103/0301-4738.73700.
Pathophysiology of human glaucomatous optic nerve damage: insights from rodent models of glaucoma.
Morrison J, Cepurna Ying Guo W, Johnson E
Exp Eye Res. 2010; 93(2):156-64.
PMID: 20708000
PMC: 3010442.
DOI: 10.1016/j.exer.2010.08.005.
Mechanisms of retinal ganglion cell injury and defense in glaucoma.
Qu J, Wang D, Grosskreutz C
Exp Eye Res. 2010; 91(1):48-53.
PMID: 20394744
PMC: 3378677.
DOI: 10.1016/j.exer.2010.04.002.