Paul H, Bera M, Macke N, Rowan S, Tirrell M
ACS Nano. 2024; 18(3):1921-1930.
PMID: 38195086
PMC: 10811751.
DOI: 10.1021/acsnano.3c06140.
Templeton C, Hamilton I, Russell R, Elber R
J Phys Chem B. 2023; 127(41):8796-8808.
PMID: 37815452
PMC: 11341850.
DOI: 10.1021/acs.jpcb.3c04354.
Horkay F, Basser P, Geissler E
Soft Matter. 2023; 19(28):5405-5415.
PMID: 37427607
PMC: 10510426.
DOI: 10.1039/d3sm00666b.
Kuhrova P, Mlynsky V, Otyepka M, Sponer J, Banas P
J Chem Inf Model. 2023; 63(7):2133-2146.
PMID: 36989143
PMC: 10091408.
DOI: 10.1021/acs.jcim.2c01438.
da Rocha L, Baptista A, Campos S
J Phys Chem B. 2022; 126(45):9123-9136.
PMID: 36321840
PMC: 9776516.
DOI: 10.1021/acs.jpcb.2c03797.
RNA Electrostatics: How Ribozymes Engineer Active Sites to Enable Catalysis.
Ekesan S, McCarthy E, Case D, York D
J Phys Chem B. 2022; 126(32):5982-5990.
PMID: 35862934
PMC: 9496635.
DOI: 10.1021/acs.jpcb.2c03727.
Acid-Base Equilibrium and Dielectric Environment Regulate Charge in Supramolecular Nanofibers.
Nap R, Qiao B, Palmer L, Stupp S, Olvera de la Cruz M, Szleifer I
Front Chem. 2022; 10:852164.
PMID: 35372273
PMC: 8965714.
DOI: 10.3389/fchem.2022.852164.
Dynamics of Cations around DNA and Protein as Revealed by Na Diffusion NMR Spectroscopy.
Yu B, Bien K, Pletka C, Iwahara J
Anal Chem. 2022; 94(5):2444-2452.
PMID: 35080384
PMC: 8829827.
DOI: 10.1021/acs.analchem.1c04197.
Direct Measurement of Interhelical DNA Repulsion and Attraction by Quantitative Cross-Linking.
Hamilton I, Gebala M, Herschlag D, Russell R
J Am Chem Soc. 2022; 144(4):1718-1728.
PMID: 35073489
PMC: 8815069.
DOI: 10.1021/jacs.1c11122.
Similarities and Differences between Na and K Distributions around DNA Obtained with Three Popular Water Models.
Kolesnikov E, Gushchin I, Zhilyaev P, Onufriev A
J Chem Theory Comput. 2021; 17(11):7246-7259.
PMID: 34633813
PMC: 10313235.
DOI: 10.1021/acs.jctc.1c00332.
Cation enrichment in the ion atmosphere is promoted by local hydration of DNA.
Ma C, Pezzotti S, Schwaab G, Gebala M, Herschlag D, Havenith M
Phys Chem Chem Phys. 2021; 23(40):23203-23213.
PMID: 34622888
PMC: 8797164.
DOI: 10.1039/d1cp01963e.
Experimental approaches for investigating ion atmospheres around nucleic acids and proteins.
Yu B, Iwahara J
Comput Struct Biotechnol J. 2021; 19:2279-2285.
PMID: 33995919
PMC: 8102144.
DOI: 10.1016/j.csbj.2021.04.033.
Dynamics of Ionic Interactions at Protein-Nucleic Acid Interfaces.
Yu B, Pettitt B, Iwahara J
Acc Chem Res. 2020; 53(9):1802-1810.
PMID: 32845610
PMC: 7497705.
DOI: 10.1021/acs.accounts.0c00212.
Multivalent ions and biomolecules: Attempting a comprehensive perspective.
Matsarskaia O, Roosen-Runge F, Schreiber F
Chemphyschem. 2020; 21(16):1742-1767.
PMID: 32406605
PMC: 7496725.
DOI: 10.1002/cphc.202000162.
Detecting Counterion Dynamics in DNA-Protein Association.
Pletka C, Nepravishta R, Iwahara J
Angew Chem Int Ed Engl. 2019; 59(4):1465-1468.
PMID: 31743557
PMC: 6980997.
DOI: 10.1002/anie.201910960.
Counterion-Dependent Mechanisms of DNA Origami Nanostructure Stabilization Revealed by Atomistic Molecular Simulation.
Roodhuizen J, Hendrikx P, Hilbers P, de Greef T, Markvoort A
ACS Nano. 2019; 13(9):10798-10809.
PMID: 31502824
PMC: 6764110.
DOI: 10.1021/acsnano.9b05650.
Quantitative Studies of an RNA Duplex Electrostatics by Ion Counting.
Gebala M, Herschlag D
Biophys J. 2019; 117(6):1116-1124.
PMID: 31466697
PMC: 6818163.
DOI: 10.1016/j.bpj.2019.08.007.
Ion counting demonstrates a high electrostatic field generated by the nucleosome.
Gebala M, Johnson S, Narlikar G, Herschlag D
Elife. 2019; 8.
PMID: 31184587
PMC: 6584128.
DOI: 10.7554/eLife.44993.
Pattern preferences of DNA nucleotide motifs by polyamines putrescine2+, spermidine3+ and spermine4.
Perepelytsya S, Ulicny J, Laaksonen A, Mocci F
Nucleic Acids Res. 2019; 47(12):6084-6097.
PMID: 31114917
PMC: 6614828.
DOI: 10.1093/nar/gkz434.
Systematic Limitations in Concentration Analysis via Anomalous Small-Angle X-ray Scattering in the Small Structure Limit.
Goerigk G, Lages S, Huber K
Polymers (Basel). 2019; 8(3).
PMID: 30979177
PMC: 6432554.
DOI: 10.3390/polym8030085.