» Articles » PMID: 127785

Anaerobic Energy-yielding Reaction Associated with Transhydrogenation from Glycerol 3-phosphate to Fumarate by an Escherichia Coli System

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1975 Dec 1
PMID 127785
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

A particulate subcellular fraction from Escherichia coli K-12 induced in anaerobic sn-glycerol 3-phosphate (G3P) dehydrogenase and fumarate reductase can catalyze under anaerobic conditions the transfer of hydrogens from G3P to fumarate, with attendant generation of high-energy phosphate. The phsophorylation process is more sensitive than the transhydrogenation process to inhibition by the detergent Triton X-100. The same is true with respect to sensitivity to sodium azide, carbonyl cyanide m-chlorophenylhydrazone and N,N'-dicyclohexylcarbodiimide. Such a preparation derived from cells with beta-galactoside permease can accumulate thiomethyl beta-D-galactoside anaerobically, and the accumulation can be stimulated twofold by adding G3P and fumarate. Mutants lacking the membrane-associated Mg2+-dependent adenosine triphosphatase cannot grow anaerobically on glycerol with fumarate as the hydrogen acceptor, although they can grow aerobically on glycerol alone.

Citing Articles

Analysis of the Actinobacillus pleuropneumoniae ArcA regulon identifies fumarate reductase as a determinant of virulence.

Buettner F, Bendallah I, Bosse J, Dreckmann K, Nash J, Langford P Infect Immun. 2008; 76(6):2284-95.

PMID: 18378638 PMC: 2423083. DOI: 10.1128/IAI.01540-07.


Potential use of sugar binding proteins in reactors for regeneration of CO2 fixation acceptor D-Ribulose-1,5-bisphosphate.

Mahato S, De D, Dutta D, Kundu M, Bhattacharya S, Schiavone M Microb Cell Fact. 2004; 3(1):7.

PMID: 15175111 PMC: 421735. DOI: 10.1186/1475-2859-3-7.


Trimethylamine oxide respiration in Proteus sp. strain NTHC153: electron transfer-dependent phosphorylation and L-serine transport.

Stenberg E, Styrvold O, Strom A J Bacteriol. 1982; 149(1):22-8.

PMID: 6798018 PMC: 216587. DOI: 10.1128/jb.149.1.22-28.1982.


Dimethylsulphoxide and trimethylamine oxide respiration of Proteus vulgaris. Evidence for a common terminal reductase system.

Styrvold O, Strom A Arch Microbiol. 1984; 140(1):74-8.

PMID: 6442555 DOI: 10.1007/BF00409774.


The respiratory chains of Escherichia coli.

Ingledew W, Poole R Microbiol Rev. 1984; 48(3):222-71.

PMID: 6387427 PMC: 373010. DOI: 10.1128/mr.48.3.222-271.1984.


References
1.
Kistler W, Lin E . Purification and properties of the flavine-stimulated anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli. J Bacteriol. 1972; 112(1):539-47. PMC: 251442. DOI: 10.1128/jb.112.1.539-547.1972. View

2.
Hirsch C, RASMINSKY M, Davis B, Lin E . A FUMARATE REDUCTASE IN ESCHERICHIA COLI DISTINCT FROM SUCCINATE DEHYDROGENASE. J Biol Chem. 1963; 238:3770-4. View

3.
Rayman M, Lo T, SANWAL B . Transport of succinate in Escherichia coli. II. Characteristics of uptake and energy coupling with transport in membrane preparations. J Biol Chem. 1972; 247(19):6332-9. View

4.
Mitchell P . A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases. FEBS Lett. 1974; 43(2):189-94. DOI: 10.1016/0014-5793(74)80997-x. View

5.
Harold F . Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972; 36(2):172-230. PMC: 408323. DOI: 10.1128/br.36.2.172-230.1972. View