» Articles » PMID: 12768455

Characterization of the Precursor of Tetraether Lipid Biosynthesis in the Thermoacidophilic Archaeon Thermoplasma Acidophilum

Overview
Journal Extremophiles
Publisher Springer
Date 2003 May 28
PMID 12768455
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Polar lipid biosynthesis in the thermoacidophilic archaeon Thermoplasma acidophilum was analyzed using terbinafine, an inhibitor of tetraether lipid biosynthesis. Cells of T. acidophilum were labeled with [(14)C]mevalonic acid, and their lipids were extracted and analyzed by two-dimensional thin-layer chromatography. Lipids labeled with [(14)C]mevalonic acid, [(14)C]glycerol, and [(32)P]orthophosphoric acid were extracted and hydrolyzed under different conditions to determine the structure of polar lipids. The polar lipids were estimated to be archaetidylglycerol, glycerophosphatidylcaldarchaetidylglycerol, caldarchaetidylglycerol, and beta- l-gulopyranosylcaldarchaetidylglycerol, the main polar lipid of T. acidophilum. Pulse and chase experiments with terbinafine revealed that one tetraether lipid molecule is synthesized by head-to-head condensation of two molecules of archaetidylglycerol and that a sugar group of tetraether phosphoglycolipid is expected to attach to the tetraether lipid core after head-to-head condensation in T. acidophilum. A precursor accumulated in the presence of terbinafine with a fast-atom-bombardment mass spectrometry peak m/z 806 was compatible with archaetidylglycerol. The relative height of the peak m/z 806 decreased after removal of the inhibitor. The results suggest that most of the precursor, archaetidylglycerol, is in fully saturated form.

Citing Articles

Membrane Adaptations and Cellular Responses of to the Allylamine Terbinafine.

Rao A, de Kok N, Driessen A Int J Mol Sci. 2023; 24(8).

PMID: 37108491 PMC: 10138448. DOI: 10.3390/ijms24087328.


Production of diverse brGDGTs by Acidobacterium Solibacter usitatus in response to temperature, pH, and O provides a culturing perspective on brGDGT proxies and biosynthesis.

Halamka T, Raberg J, McFarlin J, Younkin A, Mulligan C, Liu X Geobiology. 2022; 21(1):102-118.

PMID: 36150122 PMC: 10087280. DOI: 10.1111/gbi.12525.


The catalytic and structural basis of archaeal glycerophospholipid biosynthesis.

de Kok N, Driessen A Extremophiles. 2022; 26(3):29.

PMID: 35976526 PMC: 9385802. DOI: 10.1007/s00792-022-01277-w.


Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids.

Zeng Z, Chen H, Yang H, Chen Y, Yang W, Feng X Nat Commun. 2022; 13(1):1545.

PMID: 35318330 PMC: 8941075. DOI: 10.1038/s41467-022-29264-x.


Functionalized Membrane Domains: An Ancestral Feature of Archaea?.

Tourte M, Schaeffer P, Grossi V, Oger P Front Microbiol. 2020; 11:526.

PMID: 32296409 PMC: 7137397. DOI: 10.3389/fmicb.2020.00526.


References
1.
Tachibana A . A novel prenyltransferase, farnesylgeranyl diphosphate synthase, from the haloalkaliphilic archaeon, Natronobacterium pharaonis. FEBS Lett. 1994; 341(2-3):291-4. DOI: 10.1016/0014-5793(94)80475-3. View

2.
Kushwaha S, Kates M, Sprott G, Smith I . Novel polar lipids from the methanogen Methanospirillum hungatei GP1. Biochim Biophys Acta. 1981; 664(1):156-73. DOI: 10.1016/0005-2760(81)90038-2. View

3.
Yasuda M, Oyaizu H, Yamagishi A, Oshima T . Morphological variation of new Thermoplasma acidophilum isolates from Japanese hot springs. Appl Environ Microbiol. 1995; 61(9):3482-5. PMC: 167629. DOI: 10.1128/aem.61.9.3482-3485.1995. View

4.
Morii H, Nishihara M, Koga Y . CTP:2,3-di-O-geranylgeranyl-sn-glycero-1-phosphate cytidyltransferase in the methanogenic archaeon Methanothermobacter thermoautotrophicus. J Biol Chem. 2000; 275(47):36568-74. DOI: 10.1074/jbc.M005925200. View

5.
Ohnuma S, Suzuki M, Nishino T . Archaebacterial ether-linked lipid biosynthetic gene. Expression cloning, sequencing, and characterization of geranylgeranyl-diphosphate synthase. J Biol Chem. 1994; 269(20):14792-7. View