» Articles » PMID: 12756535

The GATE Retrotransposon in Drosophila Melanogaster: Mobility in Heterochromatin and Aspects of Its Expression in Germline Tissues

Overview
Specialty Genetics
Date 2003 May 21
PMID 12756535
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

A full-length copy of the retrotransposon GATE was identified as an insertion in the tandemly repeated, heterochromatic, Stellate genes, which are expressed in the testis of Drosophila melanogaster. Sequencing of this heterochromatic GATE copy revealed that it is closely related to the BEL retrotransposon, a representative of the recently defined BEL-like group of LTR retrotransposons. This copy contains identical LTRs, indicating that the insertion is a recent event. By contrast, the euchromatic part of the D. melanogaster genome contains only profoundly damaged GATE copies or fragments of the transposon. The preferential localization of GATE sequences in heterochromatin was confirmed for the other species in the melanogaster subgroup. The level of GATE expression is dramatically increased in ovaries, but not in testes, of spn-E(1) homozygous flies. We speculate that spn-E is involved in the silencing of GATE via an RNA interference mechanism.

Citing Articles

Nuclear Ccr4-Not mediates the degradation of telomeric and transposon transcripts at chromatin in the Drosophila germline.

Kordyukova M, Sokolova O, Morgunova V, Ryazansky S, Akulenko N, Glukhov S Nucleic Acids Res. 2019; 48(1):141-156.

PMID: 31724732 PMC: 7145718. DOI: 10.1093/nar/gkz1072.


Natural variation of piRNA expression affects immunity to transposable elements.

Ryazansky S, Radion E, Mironova A, Akulenko N, Abramov Y, Morgunova V PLoS Genet. 2017; 13(4):e1006731.

PMID: 28448516 PMC: 5407775. DOI: 10.1371/journal.pgen.1006731.


Achilles, a New Family of Transcriptionally Active Retrotransposons from the Olive Fruit Fly, with Y Chromosome Preferential Distribution.

Tsoumani K, Drosopoulou E, Bourtzis K, Gariou-Papalexiou A, Mavragani-Tsipidou P, Zacharopoulou A PLoS One. 2015; 10(9):e0137050.

PMID: 26398504 PMC: 4580426. DOI: 10.1371/journal.pone.0137050.


Telomeric repeat silencing in germ cells is essential for early development in Drosophila.

Morgunova V, Akulenko N, Radion E, Olovnikov I, Abramov Y, Olenina L Nucleic Acids Res. 2015; 43(18):8762-73.

PMID: 26240377 PMC: 4605298. DOI: 10.1093/nar/gkv775.


Specific activation of an I-like element in Drosophila interspecific hybrids.

Carnelossi E, Lerat E, Henri H, Martinez S, Carareto C, Vieira C Genome Biol Evol. 2014; 6(7):1806-17.

PMID: 24966182 PMC: 4122939. DOI: 10.1093/gbe/evu141.


References
1.
Cook J, Martin J, Lewin A, Sinden R, Tristem M . Systematic screening of Anopheles mosquito genomes yields evidence for a major clade of Pao-like retrotransposons. Insect Mol Biol. 2000; 9(1):109-17. DOI: 10.1046/j.1365-2583.2000.00167.x. View

2.
Doolittle R, Feng D, Johnson M, McClure M . Origins and evolutionary relationships of retroviruses. Q Rev Biol. 1989; 64(1):1-30. DOI: 10.1086/416128. View

3.
Stapleton W, Das S, McKee B . A role of the Drosophila homeless gene in repression of Stellate in male meiosis. Chromosoma. 2001; 110(3):228-40. DOI: 10.1007/s004120100136. View

4.
Saitou N, Nei M . The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4(4):406-25. DOI: 10.1093/oxfordjournals.molbev.a040454. View

5.
Ilyin Y, Chmeliauskaite V, Georgiev G . Double-stranded sequences in RNA of Drosophila melanogaster: relation to mobile dispersed genes. Nucleic Acids Res. 1980; 8(15):3439-57. PMC: 324162. DOI: 10.1093/nar/8.15.3439. View