» Articles » PMID: 12750356

Expression and Function of Toll-like Receptors 2 and 4 in Human Keratinocytes

Overview
Journal Int Immunol
Date 2003 May 17
PMID 12750356
Citations 102
Authors
Affiliations
Soon will be listed here.
Abstract

Keratinocytes have the ability to kill pathogenic fungi and bacteria by producing antimicrobial substances. Recent studies suggest that microbial components use signaling molecules of the human Toll-like receptor (TLR) family to transduce signals in various cells. Here we provide evidence that keratinocytes express both TLR2 and TLR4 at the mRNA and protein levels, and show that TLR2 and TLR4 are present in the normal human epidermis in vivo and that their expression is regulated by microbial components. The expression of myeloid differentiation protein gene (MyD88), which is involved in the signaling pathway of many TLR, was also demonstrated in keratinocytes. LPS + IFN-gamma increased the expression of TLR2 and TLR4 50- and 5-fold respectively. Treatment of keratinocytes with Candida albicans, mannan, Mycobacterium tuberculosis or LPS with IFN-gamma resulted in the activation and nuclear translocation of NF-kappaB. Inhibition of NF-kappaB blocked the Candida-killing activity of keratinocytes, suggesting that the antimicrobial effect of keratinocytes requires NF-kappaB activation. LPS + IFN-gamma, C. albicans (4 Candida/KC), peptidoglycan (1 micro g/ml) or M. tuberculosis extract significantly increased IL-8 gene expression after 3 h of treatment (P < 0.05). The increases over the 0-h level were 15-, 8-, 10.8- and 7-fold, respectively. The microbial compound-induced increase in IL-8 gene expression could be inhibited by anti-TLR2 and anti-TLR4 neutralizing antibodies, suggesting that TLRs are involved in the pathogen-induced expression of this pro-inflammatory cytokine. Our findings stress the importance of the role of keratinocytes as a component of innate immunity.

Citing Articles

Innate Immune Sensors and Cell Death-Frontiers Coordinating Homeostasis, Immunity, and Inflammation in Skin.

Soe Y, Sim S, Kumari S Viruses. 2025; 17(2).

PMID: 40006996 PMC: 11861910. DOI: 10.3390/v17020241.


The Secretion of Inflammatory Cytokines Triggered by TLR2 Through Calcium-Dependent and Calcium-Independent Pathways in Keratinocytes.

Kim E, Park D, Ha I, Bae S, Lee M, Yun M Mediators Inflamm. 2024; 2024:8892514.

PMID: 39588538 PMC: 11588404. DOI: 10.1155/mi/8892514.


Sphingosine 1-phosphate receptor 2 in keratinocytes plays a key role in reducing inflammation in psoriasis.

Masuda-Kuroki K, Alimohammadi S, Lowry S, Di Nardo A Front Immunol. 2024; 15:1469829.

PMID: 39391307 PMC: 11464331. DOI: 10.3389/fimmu.2024.1469829.


3D Models Currently Proposed to Investigate Human Skin Aging and Explore Preventive and Reparative Approaches: A Descriptive Review.

Lombardi F, Augello F, Ciafarone A, Ciummo V, Altamura S, Cinque B Biomolecules. 2024; 14(9).

PMID: 39334833 PMC: 11430810. DOI: 10.3390/biom14091066.


Are the Cutaneous Microbiota a Guardian of the Skin's Physical Barrier? The Intricate Relationship between Skin Microbes and Barrier Integrity.

Szabo K, Bolla B, Erdei L, Balogh F, Kemeny L Int J Mol Sci. 2023; 24(21).

PMID: 37958945 PMC: 10647730. DOI: 10.3390/ijms242115962.