Li Y, Zou L, Song J, Gong K
Bioengineering (Basel). 2024; 11(8).
PMID: 39199770
PMC: 11352051.
DOI: 10.3390/bioengineering11080812.
Zhou Q, Zhou Y, Hou N, Zhang Y, Zhu G, Li L
Front Neurosci. 2024; 18:1448294.
PMID: 39077427
PMC: 11284146.
DOI: 10.3389/fnins.2024.1448294.
Liu X, Qu L, Xie Z, Zhao J, Shi Y, Song Z
Biomed Eng Online. 2024; 23(1):52.
PMID: 38851691
PMC: 11162022.
DOI: 10.1186/s12938-024-01238-8.
Yuan L, Song J, Fan Y
PeerJ Comput Sci. 2024; 10:e1798.
PMID: 38259898
PMC: 10803052.
DOI: 10.7717/peerj-cs.1798.
Mu N, Lyu Z, Rezaeitaleshmahalleh M, Bonifas C, Gosnell J, Haw M
Front Physiol. 2023; 14:1209659.
PMID: 38028762
PMC: 10653444.
DOI: 10.3389/fphys.2023.1209659.
DSKCA-UNet: Dynamic selective kernel channel attention for medical image segmentation.
Shen L, Wang Q, Zhang Y, Qin F, Jin H, Zhao W
Medicine (Baltimore). 2023; 102(39):e35328.
PMID: 37773842
PMC: 10545043.
DOI: 10.1097/MD.0000000000035328.
Kidney Segmentation from Dynamic Contrast-Enhanced Magnetic Resonance Imaging Integrating Deep Convolutional Neural Networks and Level Set Methods.
El-Melegy M, Kamel R, Abou El-Ghar M, Alghamdi N, El-Baz A
Bioengineering (Basel). 2023; 10(7).
PMID: 37508782
PMC: 10375962.
DOI: 10.3390/bioengineering10070755.
Target area distillation and section attention segmentation network for accurate 3D medical image segmentation.
Xie R, Pan D, Zeng A, Xu X, Wang T, Ullah N
Health Inf Sci Syst. 2023; 11(1):9.
PMID: 36721638
PMC: 9884720.
DOI: 10.1007/s13755-022-00200-z.
Variational Approach for Joint Kidney Segmentation and Registration from DCE-MRI Using Fuzzy Clustering with Shape Priors.
El-Melegy M, Kamel R, Abou El-Ghar M, Alghamdi N, El-Baz A
Biomedicines. 2023; 11(1).
PMID: 36672514
PMC: 9856100.
DOI: 10.3390/biomedicines11010006.
MPSHT: Multiple Progressive Sampling Hybrid Model Multi-Organ Segmentation.
Zhao Y, Li J, Hua Z
IEEE J Transl Eng Health Med. 2022; 10:1800909.
PMID: 36457896
PMC: 9704745.
DOI: 10.1109/JTEHM.2022.3210047.
Level-Set-Based Kidney Segmentation from DCE-MRI Using Fuzzy Clustering with Population-Based and Subject-Specific Shape Statistics.
El-Melegy M, Kamel R, Abou El-Ghar M, Alghamdi N, El-Baz A
Bioengineering (Basel). 2022; 9(11).
PMID: 36354565
PMC: 9687428.
DOI: 10.3390/bioengineering9110654.
Kidney segmentation from DCE-MRI converging level set methods, fuzzy clustering and Markov random field modeling.
El-Melegy M, Kamel R, Abou El-Ghar M, Shehata M, Khalifa F, El-Baz A
Sci Rep. 2022; 12(1):18816.
PMID: 36335227
PMC: 9637091.
DOI: 10.1038/s41598-022-23408-1.
Automatic segmentation of ovarian follicles using deep neural network combined with edge information.
Chen Z, Zhang C, Li Z, Yang J, Deng H
Front Reprod Health. 2022; 4:877216.
PMID: 36303627
PMC: 9580824.
DOI: 10.3389/frph.2022.877216.
Efficient Liver Segmentation from Computed Tomography Images Using Deep Learning.
Ahmad M, Qadri S, Ashraf M, Subhi K, Khan S, Zareen S
Comput Intell Neurosci. 2022; 2022:2665283.
PMID: 35634046
PMC: 9132625.
DOI: 10.1155/2022/2665283.
Deep Neural Network for Cardiac Magnetic Resonance Image Segmentation.
Chen D, Bhopalwala H, Dewaswala N, Arunachalam S, Enayati M, Farahani N
J Imaging. 2022; 8(5).
PMID: 35621913
PMC: 9144248.
DOI: 10.3390/jimaging8050149.
Volume Exploration Using Multidimensional Bhattacharyya Flow.
Jadhav S, Torkaman M, Tannenbaum A, Nadeem S, Kaufman A
IEEE Trans Vis Comput Graph. 2021; 29(3):1651-1663.
PMID: 34780328
PMC: 9594946.
DOI: 10.1109/TVCG.2021.3127918.
A bibliometric of publication trends in medical image segmentation: Quantitative and qualitative analysis.
Zhang B, Rahmatullah B, Wang S, Zhang G, Wang H, Ale Ebrahim N
J Appl Clin Med Phys. 2021; 22(10):45-65.
PMID: 34453471
PMC: 8504607.
DOI: 10.1002/acm2.13394.
Dependently Coupled Principal Component Analysis for Bivariate Inversion Problems.
Dahiya N, Fan Y, Bignardi S, Sandhu R, Yezzi A
Proc IAPR Int Conf Pattern Recogn. 2021; 2020.
PMID: 34350427
PMC: 8330695.
DOI: 10.1109/icpr48806.2021.9413305.
A review of deep learning based methods for medical image multi-organ segmentation.
Fu Y, Lei Y, Wang T, Curran W, Liu T, Yang X
Phys Med. 2021; 85:107-122.
PMID: 33992856
PMC: 8217246.
DOI: 10.1016/j.ejmp.2021.05.003.
A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei.
Phillip J, Han K, Chen W, Wirtz D, Wu P
Nat Protoc. 2021; 16(2):754-774.
PMID: 33424024
PMC: 8167883.
DOI: 10.1038/s41596-020-00432-x.