Suess T, Kerth G
Sci Rep. 2024; 14(1):28736.
PMID: 39567574
PMC: 11579011.
DOI: 10.1038/s41598-024-80130-w.
Sunga J, Humber J, Broders H
Sci Rep. 2024; 14(1):22810.
PMID: 39354000
PMC: 11445246.
DOI: 10.1038/s41598-024-73063-x.
Kelm D, Langheld M, Nogueras J, Popa-Lisseanu A, Ibanez C
R Soc Open Sci. 2023; 10(8):230309.
PMID: 37593707
PMC: 10427821.
DOI: 10.1098/rsos.230309.
Pereira A, De Moor D, Casanova C, Brent L
R Soc Open Sci. 2023; 10(7):230486.
PMID: 37476521
PMC: 10354477.
DOI: 10.1098/rsos.230486.
Eastick D, Griffiths S, Yen J, Robert K
Integr Org Biol. 2022; 4(1):obac030.
PMID: 36060865
PMC: 9436771.
DOI: 10.1093/iob/obac030.
Seasonal roost selection and activity of a remnant population of northern myotis in Pennsylvania.
Lewis M, Turner G, Scafini M, Johnson J
PLoS One. 2022; 17(7):e0270478.
PMID: 35776732
PMC: 9249199.
DOI: 10.1371/journal.pone.0270478.
Long-term field studies in bat research: importance for basic and applied research questions in animal behavior.
Kerth G
Behav Ecol Sociobiol. 2022; 76(6):75.
PMID: 35669868
PMC: 9135593.
DOI: 10.1007/s00265-022-03180-y.
Data-driven modelling of group formation in the fission-fusion dynamics of Bechstein's bats.
Perony N, Kerth G, Schweitzer F
J R Soc Interface. 2022; 19(190):20220170.
PMID: 35506214
PMC: 9065967.
DOI: 10.1098/rsif.2022.0170.
Mixed-species groups in bats: non-random roost associations and roost selection in neotropical understory bats.
Kelm D, Toelch U, Jones M
Front Zool. 2021; 18(1):53.
PMID: 34641887
PMC: 8507185.
DOI: 10.1186/s12983-021-00437-6.
Tests of hypotheses for group formation in the subtropical leaf-dwelling bat, .
Hsu C, Kao M, Chou C, Cheng H, Liu J
Ecol Evol. 2021; 11(11):6730-6741.
PMID: 34141253
PMC: 8207392.
DOI: 10.1002/ece3.7524.
Social networks based on frequency of roost cohabitation do not reflect association rates of within their roosts.
Waag A, Treanor J, Kropczynski J, Johnson J
Ecol Evol. 2021; 11(11):5927-5936.
PMID: 34141193
PMC: 8207371.
DOI: 10.1002/ece3.7244.
Quantifying individual influence in leading-following behavior of Bechstein's bats.
Mavrodiev P, Fleischmann D, Kerth G, Schweitzer F
Sci Rep. 2021; 11(1):2691.
PMID: 33514763
PMC: 7846810.
DOI: 10.1038/s41598-020-80946-2.
An agent-based algorithm resembles behaviour of tree-dwelling bats under fission-fusion dynamics.
Zelenka J, Kasanicky T, Budinska I, Kanuch P
Sci Rep. 2020; 10(1):16793.
PMID: 33033280
PMC: 7545098.
DOI: 10.1038/s41598-020-72999-0.
Thinking small: Next-generation sensor networks close the size gap in vertebrate biologging.
Ripperger S, Carter G, Page R, Duda N, Koelpin A, Weigel R
PLoS Biol. 2020; 18(4):e3000655.
PMID: 32240158
PMC: 7117662.
DOI: 10.1371/journal.pbio.3000655.
Free-ranging bats combine three different cognitive processes for roost localization.
Hernandez-Montero J, Reusch C, Simon R, Schoner C, Kerth G
Oecologia. 2020; 192(4):979-988.
PMID: 32236689
PMC: 7165157.
DOI: 10.1007/s00442-020-04634-8.
Spatial networks differ when food supply changes: Foraging strategy of Egyptian fruit bats.
Bachorec E, Horacek I, Hulva P, Konecny A, Lucan R, Jedlicka P
PLoS One. 2020; 15(2):e0229110.
PMID: 32097434
PMC: 7041839.
DOI: 10.1371/journal.pone.0229110.
High detectability with low impact: Optimizing large PIT tracking systems for cave-dwelling bats.
van Harten E, Reardon T, Lumsden L, Meyers N, Prowse T, Weyland J
Ecol Evol. 2019; 9(19):10916-10928.
PMID: 31641445
PMC: 6802374.
DOI: 10.1002/ece3.5482.
How to quantify animal activity from radio-frequency identification (RFID) recordings.
Iserbyt A, Griffioen M, Borremans B, Eens M, Muller W
Ecol Evol. 2018; 8(20):10166-10174.
PMID: 30397456
PMC: 6206221.
DOI: 10.1002/ece3.4491.
PRINCIPLES AND PATTERNS OF BAT MOVEMENTS: FROM AERODYNAMICS TO ECOLOGY.
Voigt C, Frick W, Holderied M, Holland R, Kerth G, Mello M
Q Rev Biol. 2018; 92(3):267-287.
PMID: 29861509
PMC: 5983048.
DOI: 10.1086/693847.
Persistent producer-scrounger relationships in bats.
Harten L, Matalon Y, Galli N, Navon H, Dor R, Yovel Y
Sci Adv. 2018; 4(2):e1603293.
PMID: 29441356
PMC: 5810609.
DOI: 10.1126/sciadv.1603293.