» Articles » PMID: 12624854

Analysis of GNAS1 and Overlapping Transcripts Identifies the Parental Origin of Mutations in Patients with Sporadic Albright Hereditary Osteodystrophy and Reveals a Model System in Which to Observe the Effects of Splicing Mutations on Translated And...

Overview
Journal Am J Hum Genet
Publisher Cell Press
Specialty Genetics
Date 2003 Mar 8
PMID 12624854
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Albright hereditary osteodystrophy (AHO) is caused by heterozygous deactivating GNAS1 mutations. There is a parent-of-origin effect. Maternally derived mutations are usually associated with resistance to parathyroid hormone termed "pseudohypoparathyroidism type Ia." Paternally derived mutations are associated with AHO but usually normal hormone responsiveness, known as "pseudo-pseudohypoparathyroidism." These observations can be explained by tissue-specific GNAS1 imprinting. Regulation of the genomic region that encompasses GNAS1 is complex. At least three upstream exons that splice to exon 2 of GNAS1 and that are imprinted have been reported. NESP55 is exclusively maternally expressed, whereas exon 1A and XL alphas are exclusively paternally expressed. We set out to identify the parental origin of GNAS1 mutations in patients with AHO by searching for their mutation in the overlapping transcripts. This information would be of value in patients with sporadic disease, for predicting their endocrine phenotype and planning follow-up. In doing so, we identified mutations that resulted in nonsense-mediated decay of the mutant Gs alpha transcript but that were detectable in NESP55 messenger RNA (mRNA), probably because they lie within its 3' untranslated region. Analysis of the NESP55 transcripts revealed the creation of a novel splice site in one patient and an unusual intronic mutation that caused retention of the intron in a further patient, neither of which could be detected by analysis of the Gs alpha complementary DNA. This cluster of overlapping transcripts represents a useful model system in which to analyze the effects that mutant sequence has on mRNA-in particular, splicing-and the mechanisms of nonsense-mediated mRNA decay.

Citing Articles

Structural and Functional Implication of Natural Variants of Gαs.

Jeong Y, Chung K Int J Mol Sci. 2023; 24(4).

PMID: 36835474 PMC: 9959179. DOI: 10.3390/ijms24044064.


A Novel GNAS Mutation in a Patient with Ia Pseudohypoparathyroidism (iPPSD2) Phenotype.

Gorbacheva A, Pogoda T, Bogdanov V, Zakharova V, Salimkhanov R, Eremkina A Genes (Basel). 2023; 14(2).

PMID: 36833251 PMC: 9956201. DOI: 10.3390/genes14020324.


Pathogenic variants of the gene introduce an abnormal amino acid sequence in the β6 strand/α5 helix of Gsα, causing pseudohypoparathyroidism type 1A and pseudopseudohypoparathyroidism in two unrelated Japanese families.

Ohata Y, Kakimoto H, Seki Y, Ishihara Y, Nakano Y, Yamamoto K Bone Rep. 2022; 17:101637.

PMID: 36407415 PMC: 9668531. DOI: 10.1016/j.bonr.2022.101637.


GNAS mutation is an unusual cause of primary adrenal insufficiency: a case report.

Tong Y, Yue D, Xin Y, Zhang D BMC Pediatr. 2022; 22(1):472.

PMID: 35927642 PMC: 9351131. DOI: 10.1186/s12887-022-03517-6.


Central precocious puberty in a boy with pseudohypoparathyroidism type Ia due to a novel mutation.

Kagami R, Sato T, Ishii T, Araki E, Yamashita Y, Shibata H Clin Pediatr Endocrinol. 2020; 29(2):89-90.

PMID: 32313379 PMC: 7160456. DOI: 10.1297/cpe.29.89.


References
1.
Yu S, Yu D, Hainline B, BRENER J, Wilson K, Wilson L . A deletion hot-spot in exon 7 of the Gs alpha gene (GNAS1) in patients with Albright hereditary osteodystrophy. Hum Mol Genet. 1995; 4(10):2001-2. DOI: 10.1093/hmg/4.10.2001. View

2.
Warner D, ROMANOWSKI R, Yu S, Weinstein L . Mutagenesis of the conserved residue Glu259 of Gsalpha demonstrates the importance of interactions between switches 2 and 3 for activation. J Biol Chem. 1999; 274(8):4977-84. DOI: 10.1074/jbc.274.8.4977. View

3.
Hannula K, Lipsanen-Nyman M, Scherer S, Holmberg C, Hoglund P, Kere J . Maternal and paternal chromosomes 7 show differential methylation of many genes in lymphoblast DNA. Genomics. 2001; 73(1):1-9. DOI: 10.1006/geno.2001.6502. View

4.
Mantovani G, Ballare E, Giammona E, Beck-Peccoz P, Spada A . The gsalpha gene: predominant maternal origin of transcription in human thyroid gland and gonads. J Clin Endocrinol Metab. 2002; 87(10):4736-40. DOI: 10.1210/jc.2002-020183. View

5.
Germain-Lee E, Ding C, Deng Z, Crane J, Saji M, Ringel M . Paternal imprinting of Galpha(s) in the human thyroid as the basis of TSH resistance in pseudohypoparathyroidism type 1a. Biochem Biophys Res Commun. 2002; 296(1):67-72. DOI: 10.1016/s0006-291x(02)00833-1. View