» Articles » PMID: 12509486

Chronic Acetylcholinesterase Overexpression Induces Multilevelled Aberrations in Mouse Neuromuscular Physiology

Overview
Journal J Physiol
Specialty Physiology
Date 2003 Jan 2
PMID 12509486
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Chronic overexpression of the acetylcholine-hydrolysing enzyme acetylcholinesterase (AChE) is a notable consequence of exposure to anticholinesterase drugs or poisons. However, the physiological consequences for the resultant neuromuscular disfunction have not yet been carefully analysed. Here we report detailed dissection of the different components of neuromuscular function in transgenic mice previously shown to display motor fatigue and altered muscle morphology as a consequence of neuronal overexpression of AChE-S, the synaptic AChE variant. Transgenic diaphragm muscle presented exaggerated fatigue as a combined consequence of neurotransmission fading and muscle mechanical malfunctioning. In a tetanic stimulation protocol, transgenic muscles rapidly fatigued to a larger extent than wild-type muscles, when stimulated either directly or via the phrenic nerve. AChE overexpression involved moderate but significant aberrations of synaptic transmission with higher quantal content (measured at 0.2 mM Ca(2+), 2.3 mM Mg(2+)). Furthermore, treatment with the anti-cholinesterase physostigmine revealed a higher amplitude and half-decay time of the transgenic quantal postsynaptic response. Our observations imply that elevated levels of neuronal AChE-S are expected to cause muscle exhaustion due to a combination of modest, multilevelled aberrations in synaptic transmission, muscle function and morphology.

Citing Articles

Measuring Neuromuscular Junction Functionality.

Rizzuto E, Pisu S, Nicoletti C, Del Prete Z, Musaro A J Vis Exp. 2017; (126).

PMID: 28809841 PMC: 5614110. DOI: 10.3791/55227.


Biological endpoints, enzyme activities, and blood cell parameters in two anuran tadpole species in rice agroecosystems of mid-eastern Argentina.

Attademo A, Peltzer P, Lajmanovich R, Cabagna-Zenklusen M, Junges C, Basso A Environ Monit Assess. 2013; 186(1):635-49.

PMID: 24078141 DOI: 10.1007/s10661-013-3404-z.


Plant-derived human acetylcholinesterase-R provides protection from lethal organophosphate poisoning and its chronic aftermath.

Evron T, Geyer B, Cherni I, Muralidharan M, Kilbourne J, Fletcher S FASEB J. 2007; 21(11):2961-9.

PMID: 17475919 PMC: 2766558. DOI: 10.1096/fj.07-8112com.


Readthrough acetylcholinesterase: a multifaceted inducer of stress reactions.

Zimmerman G, Soreq H J Mol Neurosci. 2006; 30(1-2):197-200.

PMID: 17192675 DOI: 10.1385/JMN:30:1:197.

References
1.
Sternfeld M, Ming G, Song H, Sela K, Timberg R, Poo M . Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini. J Neurosci. 1998; 18(4):1240-9. PMC: 6792736. View

2.
Beeri R, Le Novere N, Mervis R, Huberman T, Grauer E, Changeux J . Enhanced hemicholinium binding and attenuated dendrite branching in cognitively impaired acetylcholinesterase-transgenic mice. J Neurochem. 1997; 69(6):2441-51. DOI: 10.1046/j.1471-4159.1997.69062441.x. View

3.
Kaufer D, Friedman A, Seidman S, Soreq H . Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature. 1998; 393(6683):373-7. DOI: 10.1038/30741. View

4.
Andres C, Seidman S, Beeri R, Timberg R, Soreq H . Transgenic acetylcholinesterase induces enlargement of murine neuromuscular junctions but leaves spinal cord synapses intact. Neurochem Int. 1998; 32(5-6):449-56. DOI: 10.1016/s0197-0186(97)00121-6. View

5.
Grifman M, Galyam N, Seidman S, Soreq H . Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis. Proc Natl Acad Sci U S A. 1998; 95(23):13935-40. PMC: 24973. DOI: 10.1073/pnas.95.23.13935. View