» Articles » PMID: 12505985

Repeat Motifs of Tau Bind to the Insides of Microtubules in the Absence of Taxol

Overview
Journal EMBO J
Date 2002 Dec 31
PMID 12505985
Citations 139
Authors
Affiliations
Soon will be listed here.
Abstract

The tau family of microtubule-associated proteins has a microtubule-binding domain which includes three or four conserved sequence repeats. Pelleting assays show that when tubulin and tau are co- assembled into microtubules, the presence of taxol reduces the amount of tau incorporated. In the absence of taxol, strong binding sites for tau are filled by one repeat motif per tubulin dimer; additional tau molecules bind more weakly. We have labelled a repeat motif with nanogold and used three-dimensional electron cryomicroscopy to compare images of microtubules assembled with labelled or unlabelled tau. With kinesin motor domains bound to the microtubule outer surface to distinguish between alpha- and beta-tubulin, we show that the gold label lies on the inner surface close to the taxol binding site on beta-tubulin. Loops within the repeat motifs of tau have sequence similarity to an extended loop which occupies a site in alpha-tubulin equivalent to the taxol-binding pocket in beta-tubulin. We propose that loops in bound tau stabilize microtubules in a similar way to taxol, although with lower affinity so that assembly is reversible.

Citing Articles

Structural insights into the role of the proline rich region in tau function.

Acosta K, Brue C, Holubovska P, Kim H, Mayne L, Murakami K Structure. 2025; 33(3):465-474.e8.

PMID: 39826549 PMC: 11890945. DOI: 10.1016/j.str.2024.12.017.


Accumulation of microtubule-associated protein tau promotes hepatocellular carcinogenesis through inhibiting autophagosome-lysosome fusion.

Liu X, Hao Z, He H, Wang X, Wang W, Shu X Mol Cell Biochem. 2024; .

PMID: 39718681 DOI: 10.1007/s11010-024-05193-9.


The structure of a Tau fragment bound to tubulin prompts new hypotheses on Tau mechanism and oligomerization.

Ammar Khodja L, Campanacci V, Lippens G, Gigant B PNAS Nexus. 2024; 3(11):pgae487.

PMID: 39534653 PMC: 11554759. DOI: 10.1093/pnasnexus/pgae487.


Unraveling the interplay of kinesin-1, tau, and microtubules in neurodegeneration associated with Alzheimer's disease.

Durairajan S, Selvarasu K, Singh A, Patnaik S, Iyaswamy A, Jaiswal Y Front Cell Neurosci. 2024; 18:1432002.

PMID: 39507380 PMC: 11537874. DOI: 10.3389/fncel.2024.1432002.


Could there be an experimental way to link consciousness and quantum computations of brain microtubules?.

Avila J, Marco J, Plascencia-Villa G, Bajic V, Perry G Front Neurosci. 2024; 18:1430432.

PMID: 38979125 PMC: 11228156. DOI: 10.3389/fnins.2024.1430432.


References
1.
Mandelkow E, Schultheiss R, Mandelkow E . Assembly and three-dimensional image reconstruction of tubulin hoops. J Mol Biol. 1984; 177(3):507-29. DOI: 10.1016/0022-2836(84)90297-3. View

2.
BRYAN J, Nagle B, Doenges K . Inhibition of tubulin assembly by RNA and other polyanions: evidence for a required protein. Proc Natl Acad Sci U S A. 1975; 72(9):3570-4. PMC: 433037. DOI: 10.1073/pnas.72.9.3570. View

3.
LITTAUER U, Giveon D, Thierauf M, Ginzburg I, Ponstingl H . Common and distinct tubulin binding sites for microtubule-associated proteins. Proc Natl Acad Sci U S A. 1986; 83(19):7162-6. PMC: 386675. DOI: 10.1073/pnas.83.19.7162. View

4.
Trachtenberg S, DeRosier D . Three-dimensional structure of the frozen-hydrated flagellar filament. The left-handed filament of Salmonella typhimurium. J Mol Biol. 1987; 195(3):581-601. DOI: 10.1016/0022-2836(87)90184-7. View

5.
Hirokawa N, Shiomura Y, Okabe S . Tau proteins: the molecular structure and mode of binding on microtubules. J Cell Biol. 1988; 107(4):1449-59. PMC: 2115262. DOI: 10.1083/jcb.107.4.1449. View