Kaderabkova N, Bharathwaj M, Furniss R, Gonzalez D, Palmer T, Mavridou D
Microbiology (Reading). 2022; 168(8).
PMID: 35943884
PMC: 10235803.
DOI: 10.1099/mic.0.001217.
Gao J, Ouyang C, Zhao J, Han Y, Guo Q, Liu X
Front Microbiol. 2022; 13:892428.
PMID: 35923407
PMC: 9342664.
DOI: 10.3389/fmicb.2022.892428.
Jiang C, Wynne M, Huber D
Front Mol Biosci. 2021; 8:669376.
PMID: 33928127
PMC: 8076867.
DOI: 10.3389/fmolb.2021.669376.
Sakiyama K, Shimokawa-Chiba N, Fujiwara K, Chiba S
Nucleic Acids Res. 2021; 49(3):1550-1566.
PMID: 33503266
PMC: 7897499.
DOI: 10.1093/nar/gkab024.
Siegel A, McAvoy C, Lam V, Liang F, Kroon G, Miaou E
J Mol Biol. 2020; 432(24):166708.
PMID: 33188783
PMC: 7780713.
DOI: 10.1016/j.jmb.2020.11.007.
Comparison of Single and Multiple Turnovers of SecYEG in Escherichia coli.
Mao C, Bariya P, Suo Y, Randall L
J Bacteriol. 2020; 202(24).
PMID: 32989086
PMC: 7685557.
DOI: 10.1128/JB.00462-20.
Cotranslational folding of alkaline phosphatase in the periplasm of Escherichia coli.
Elfageih R, Karyolaimos A, Kemp G, Gier J, von Heijne G, Kudva R
Protein Sci. 2020; 29(10):2028-2037.
PMID: 32790204
PMC: 7513700.
DOI: 10.1002/pro.3927.
Co-Translational Protein Folding and Sorting in Chloroplasts.
Ries F, Herkt C, Willmund F
Plants (Basel). 2020; 9(2).
PMID: 32045984
PMC: 7076657.
DOI: 10.3390/plants9020214.
Serine Protease Autotransporters of the (SPATEs): Out and About and Chopping It Up.
Pokharel P, Habouria H, Bessaiah H, Dozois C
Microorganisms. 2019; 7(12).
PMID: 31766493
PMC: 6956023.
DOI: 10.3390/microorganisms7120594.
The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity.
Jamshad M, Knowles T, White S, Ward D, Mohammed F, Rahman K
Elife. 2019; 8.
PMID: 31246174
PMC: 6620043.
DOI: 10.7554/eLife.48385.
Structural insights into chaperone addiction of toxin-antitoxin systems.
Guillet V, Bordes P, Bon C, Marcoux J, Gervais V, Sala A
Nat Commun. 2019; 10(1):782.
PMID: 30770830
PMC: 6377645.
DOI: 10.1038/s41467-019-08747-4.
SatS is a chaperone for the SecA2 protein export pathway.
Miller B, Hughes R, Ligon L, Rigel N, Malik S, Anjuwon-Foster B
Elife. 2019; 8.
PMID: 30604681
PMC: 6333443.
DOI: 10.7554/eLife.40063.
Substrate Proteins Take Shape at an Improved Bacterial Translocon.
Oliver D
J Bacteriol. 2018; 201(1).
PMID: 30322856
PMC: 6287458.
DOI: 10.1128/JB.00618-18.
Coassembly of SecYEG and SecA Fully Restores the Properties of the Native Translocon.
Bariya P, Randall L
J Bacteriol. 2018; 201(1).
PMID: 30275279
PMC: 6287467.
DOI: 10.1128/JB.00493-18.
The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria.
Cranford-Smith T, Huber D
FEMS Microbiol Lett. 2018; 365(11).
PMID: 29790985
PMC: 5963308.
DOI: 10.1093/femsle/fny093.
Two distinct sites of client protein interaction with the chaperone cpSRP43.
McAvoy C, Siegel A, Piszkiewicz S, Miaou E, Yu M, Nguyen T
J Biol Chem. 2018; 293(23):8861-8873.
PMID: 29669809
PMC: 5995501.
DOI: 10.1074/jbc.RA118.002215.
The Sec System: Protein Export in .
Crane J, Randall L
EcoSal Plus. 2017; 7(2).
PMID: 29165233
PMC: 5807066.
DOI: 10.1128/ecosalplus.ESP-0002-2017.
Directed evolution of SecB chaperones toward toxin-antitoxin systems.
Sala A, Bordes P, Ayala S, Slama N, Tranier S, Coddeville M
Proc Natl Acad Sci U S A. 2017; 114(47):12584-12589.
PMID: 29114057
PMC: 5703295.
DOI: 10.1073/pnas.1710456114.
The SecA protein deeply penetrates into the SecYEG channel during insertion, contacting most channel transmembrane helices and periplasmic regions.
Banerjee T, Zheng Z, Abolafia J, Harper S, Oliver D
J Biol Chem. 2017; 292(48):19693-19707.
PMID: 28986446
PMC: 5712611.
DOI: 10.1074/jbc.RA117.000130.
Folding while bound to chaperones.
Horowitz S, Koldewey P, Stull F, Bardwell J
Curr Opin Struct Biol. 2017; 48:1-5.
PMID: 28734135
PMC: 5775065.
DOI: 10.1016/j.sbi.2017.06.009.