» Articles » PMID: 12419616

The Fundamental Contribution of Phages to GAS Evolution, Genome Diversification and Strain Emergence

Overview
Date 2002 Nov 7
PMID 12419616
Citations 90
Authors
Affiliations
Soon will be listed here.
Abstract

The human bacterial pathogen group A Streptococcus (GAS) causes many different diseases including pharyngitis, tonsillitis, impetigo, scarlet fever, streptococcal toxic shock syndrome, necrotizing fasciitis and myositis, and the post-infection sequelae glomerulonephritis and rheumatic fever. The frequency and severity of GAS infections increased in the 1980s and 1990s, but the cause of this increase is unknown. Recently, genome sequencing of serotype M1, M3 and M18 strains revealed many new proven or putative virulence factors that are encoded by phages or phage-like elements. Importantly, these genetic elements account for an unexpectedly large proportion of the difference in gene content between the three strains. These new genome-sequencing studies have provided evidence that temporally and geographically distinct epidemics, and the complex array of GAS clinical presentations, might be related in part to the acquisition or evolution of phage-encoded virulence factors. We anticipate that new phage-encoded virulence factors will be identified by sequencing the genomes of additional GAS strains, including organisms non-randomly associated with particular clinical syndromes.

Citing Articles

Nosocomial Transmission of Necrotizing Fasciitis: A Molecular Characterization of Group A Streptococcal DNases in Clinical Virulence.

Deneubourg G, Schiavolin L, Lakhloufi D, Botquin G, Delforge V, Davies M Microorganisms. 2024; 12(11).

PMID: 39597598 PMC: 11596691. DOI: 10.3390/microorganisms12112209.


Comparative Genomic Analysis of Prophages in Human Vaginal Isolates of .

Wiafe-Kwakye C, Fournier A, Maurais H, Southworth K, Molloy S, Neely M Pathogens. 2024; 13(8).

PMID: 39204211 PMC: 11357604. DOI: 10.3390/pathogens13080610.


Recent Scientific Advancements towards a Vaccine against Group A .

Fan J, Toth I, Stephenson R Vaccines (Basel). 2024; 12(3).

PMID: 38543906 PMC: 10974072. DOI: 10.3390/vaccines12030272.


Small protein modules dictate prophage fates during polylysogeny.

Silpe J, Duddy O, Johnson G, Beggs G, Hussain F, Forsberg K Nature. 2023; 620(7974):625-633.

PMID: 37495698 PMC: 10432266. DOI: 10.1038/s41586-023-06376-y.


Casposons - silent heroes of the CRISPR-Cas systems evolutionary history.

Smaruj P, Kieliszek M EXCLI J. 2023; 22:70-83.

PMID: 36814855 PMC: 9939771. DOI: 10.17179/excli2022-5581.