» Articles » PMID: 12399489

Inversions over the Terminus Region in Salmonella and Escherichia Coli: IS200s As the Sites of Homologous Recombination Inverting the Chromosome of Salmonella Enterica Serovar Typhi

Overview
Journal J Bacteriol
Specialty Microbiology
Date 2002 Oct 26
PMID 12399489
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Genomic rearrangements (duplications and inversions) in enteric bacteria such as Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12 are frequent (10(-3) to 10(-5)) in culture, but in wild-type strains these genomic rearrangements seldom survive. However, inversions commonly survive in the terminus of replication (TER) region, where bidirectional DNA replication terminates; nucleotide sequences from S. enterica serovar Typhimurium LT2, S. enterica serovar Typhi CT18, E. coli K12, and E. coli O157:H7 revealed genomic inversions spanning the TER region. Assuming that S. enterica serovar Typhimurium LT2 represents the ancestral genome structure, we found an inversion of 556 kb in serovar Typhi CT18 between two of the 25 IS200 elements and an inversion of about 700 kb in E. coli K12 and E. coli O157:H7. In addition, there is another inversion of 500 kb in E. coli O157:H7 compared with E. coli K12. PCR analysis confirmed that all S. enterica serovar Typhi strains tested, but not strains of other Salmonella serovars, have an inversion at the exact site of the IS200 insertions. We conclude that inversions of the TER region survive because they do not significantly change replication balance or because they are part of the compensating mechanisms to regain chromosome balance after it is disrupted by insertions, deletions, or other inversions.

Citing Articles

Differential regulatory control of curli (csg) gene expression in Salmonella enterica serovar Typhi requires more than a functional CsgD regulator.

Ou C, Dozois C, Daigle F Sci Rep. 2023; 13(1):14905.

PMID: 37689734 PMC: 10492818. DOI: 10.1038/s41598-023-42027-y.


Consequences of producing DNA gyrase from a synthetic gyrBA operon in Salmonella enterica serovar Typhimurium.

Pozdeev G, Mogre A, Dorman C Mol Microbiol. 2021; 115(6):1410-1429.

PMID: 33539568 PMC: 8359277. DOI: 10.1111/mmi.14689.


Chronological set of E. coli O157:H7 bovine strains establishes a role for repeat sequences and mobile genetic elements in genome diversification.

Stanton E, Wahlig T, Park D, Kaspar C BMC Genomics. 2020; 21(1):562.

PMID: 32807088 PMC: 7430833. DOI: 10.1186/s12864-020-06943-x.


Conserved intergenic sequences revealed by CTAG-profiling in Salmonella: thermodynamic modeling for function prediction.

Tang L, Zhu S, Mastriani E, Fang X, Zhou Y, Li Y Sci Rep. 2017; 7:43565.

PMID: 28262684 PMC: 5337935. DOI: 10.1038/srep43565.


Insertion sequence-driven evolution of Escherichia coli in chemostats.

Gaffe J, McKenzie C, Maharjan R, Coursange E, Ferenci T, Schneider D J Mol Evol. 2011; 72(4):398-412.

PMID: 21399911 DOI: 10.1007/s00239-011-9439-2.


References
1.
Read T, Brunham R, Shen C, Gill S, Heidelberg J, White O . Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 2000; 28(6):1397-406. PMC: 111046. DOI: 10.1093/nar/28.6.1397. View

2.
Casjens S . The diverse and dynamic structure of bacterial genomes. Annu Rev Genet. 1999; 32:339-77. DOI: 10.1146/annurev.genet.32.1.339. View

3.
Tillier E, Collins R . Genome rearrangement by replication-directed translocation. Nat Genet. 2000; 26(2):195-7. DOI: 10.1038/79918. View

4.
Perna N, Plunkett 3rd G, Burland V, Mau B, Glasner J, Rose D . Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001; 409(6819):529-33. DOI: 10.1038/35054089. View

5.
Eisen J, Heidelberg J, White O, Salzberg S . Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol. 2001; 1(6):RESEARCH0011. PMC: 16139. DOI: 10.1186/gb-2000-1-6-research0011. View