» Articles » PMID: 12397223

Decremental Conduction in the Posterior and Anterior AV Nodal Inputs

Overview
Publisher Springer
Date 2002 Oct 25
PMID 12397223
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Unlabelled: The role for fiber orientation as a determinant of conduction and block in the posterior (slow pathway, SP) and anterior (fast pathway, FP) AV nodal inputs was examined using multiple extracellular bipolar and intracellular microelectrode recordings in the superfused canine AV junction (N = 14).

Results: In both inputs, antegrade longitudinal conduction velocity decremented in association with decreased action potential amplitude and dV/dt(max). A similar decrement was also present in the SP transverse to fiber orientation. SP conduction block occurred preferentially near its insertion into the compact AV node with very slow conduction (0.05 +/- 0.01 M/sec) preceding conduction block. Distal antegrade FP conduction block occurred before conduction block occurred at more proximal FP sites. Conduction in the distal FP was maintained at a higher velocity (0.11 +/- 0.01 M/sec, p < 0.05 vs. SP) before 2:1 conduction block was observed. Conduction velocity, action potential amplitude, and dV/dt(max) were not different at any SP or FP site for paired activation transverse and longitudinal to fiber orientation.

Conclusions: The data do not demonstrate a role for fiber orientation determining decremental conduction and block in transitional cell AV nodal inputs. Decremental conduction in both the SP and FP inputs is consistent with a proximal-to-distal gradient in resting membrane potential, action potential amplitude, dV/dt(max), and intracellular excitability in transitional cells during antegrade activation.

Citing Articles

Coexistent Types of Atrioventricular Nodal Re-Entrant Tachycardia: Implications for the Tachycardia Circuit.

Katritsis D, Marine J, Latchamsetty R, Zografos T, Tanawuttiwat T, Sheldon S Circ Arrhythm Electrophysiol. 2015; 8(5):1189-93.

PMID: 26155802 PMC: 4608481. DOI: 10.1161/CIRCEP.115.002971.


Stable patterns of AH block arising from longitudinal dissociation and reentry within the superfused rabbit AV junction.

Patterson E, Scherlag B, Lazzara R J Interv Card Electrophysiol. 2010; 28(1):5-18.

PMID: 20131089 DOI: 10.1007/s10840-009-9462-z.


Delineation of AV conduction pathways by selective surgical transection: effects on antegrade and retrograde transmission.

Patterson E, Scherlag B J Interv Card Electrophysiol. 2005; 13(2):95-105.

PMID: 16133836 DOI: 10.1007/s10840-005-0273-6.


Fast pathway-His bundle connections in the rabbit heart.

Patterson E, Scherlag B J Interv Card Electrophysiol. 2004; 10(2):121-9.

PMID: 15014212 DOI: 10.1023/B:JICE.0000019265.30321.ca.

References
1.
Racker D . Atrioventricular node and input pathways: a correlated gross anatomical and histological study of the canine atrioventricular junctional region. Anat Rec. 1989; 224(3):336-54. DOI: 10.1002/ar.1092240303. View

2.
Hocini M, Loh P, Ho S, Sanchez-Quintana D, Thibault B, de Bakker J . Anisotropic conduction in the triangle of Koch of mammalian hearts: electrophysiologic and anatomic correlations. J Am Coll Cardiol. 1998; 31(3):629-36. DOI: 10.1016/s0735-1097(97)00519-6. View

3.
Janse M . Influence of the direction of the atrial wave front on A-V nodal transmission in isolated hearts of rabbits. Circ Res. 1969; 25(4):439-49. DOI: 10.1161/01.res.25.4.439. View

4.
Hirao K, Scherlag B, Poty H, Otomo K, Tondo C, Antz M . Electrophysiology of the atrio-AV nodal inputs and exits in the normal dog heart: radiofrequency ablation using an epicardial approach. J Cardiovasc Electrophysiol. 1997; 8(8):904-15. DOI: 10.1111/j.1540-8167.1997.tb00852.x. View

5.
Anderson R, Janse M, van Capelle F, Billette J, Becker A, Durrer D . A combined morphological and electrophysiological study of the atrioventricular node of the rabbit heart. Circ Res. 1974; 35(6):909-22. DOI: 10.1161/01.res.35.6.909. View