A Computer System for Acoustic Analysis of Pathological Voices and Laryngeal Diseases Screening
Overview
Biophysics
Authors
Affiliations
A system for acoustic analysis of pathological voices is proposed. The vocalized part of the voice signal is separated and all glottal cycles are traced by means of a cross-correlation detector. Based on the so determined beginning and duration of all glottal cycles, shimmer, jitter, several harmonics-to-noise ratios and other widely used acoustic parameters are calculated. New parameters are also introduced for estimation of the turbulent noise in voice signals (Turbulent Noise Index - TNI) and for the "breathy" voice characterization (Normalized First Harmonic Energy - NFHE). These parameters are applied for laryngeal pathology detection. An identification accuracy of 96.1% by the K-nearest neighbors' method has been achieved. The system is clinically tested.
Xia T, Han J, Mascolo C Exp Biol Med (Maywood). 2022; 247(22):2053-2061.
PMID: 35974706 PMC: 9791302. DOI: 10.1177/15353702221115428.
Muslih I, Herawati S, Pawarti D Indian J Otolaryngol Head Neck Surg. 2019; 71(Suppl 1):482-488.
PMID: 31742007 PMC: 6848684. DOI: 10.1007/s12070-018-1363-y.
Decoding phonation with artificial intelligence (DeP AI): Proof of concept.
Powell M, Rodriguez Cancio M, Young D, Nock W, Abdelmessih B, Zeller A Laryngoscope Investig Otolaryngol. 2019; 4(3):328-334.
PMID: 31236467 PMC: 6580072. DOI: 10.1002/lio2.259.
Cesari U, De Pietro G, Marciano E, Niri C, Sannino G, Verde L Biomed Res Int. 2018; 2018:8193694.
PMID: 30175144 PMC: 6106917. DOI: 10.1155/2018/8193694.
Mendez Zorrilla A, Garcia Zapirain B, Izquierdo A Springerplus. 2013; 1(1):64.
PMID: 23483585 PMC: 3586405. DOI: 10.1186/2193-1801-1-64.