» Articles » PMID: 12135483

Differential Regulation of Telomerase Activity by Six Telomerase Subunits

Overview
Journal Eur J Biochem
Specialty Biochemistry
Date 2002 Jul 24
PMID 12135483
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Telomerase is a specialized reverse transcriptase responsible for synthesizing telomeric DNA at the ends of chromosomes. Six subunits composing the telomerase complex have been cloned: hTR (human telomerase RNA), TEP1 (telomerase-associated protein 1), hTERT (human telomerase reverse transcriptase), hsp90 (heat shock protein 90), p23, and dyskerin. In this study, we investigated the role of each the telomerase subunit on the activity of telomerase. Through down- or upregulation of telomerase, we found that only hTERT expression changed proportionally with the level of telomerase activity. The other components, TEP1, hTR, hsp90, p23, and dyskerin remained at high and unchanged levels throughout modulation. In vivo and in vitro experiments with antisense oligonucleotides against each telomerase component were also performed. Telomerase activity was decreased or abolished by antisense treatment. To correlate clinical sample status, four pairs of normal and malignant tissues from patients with oral cancer were examined. Except for the hTERT subunit, which showed differential expression in normal and cancer tissues, all other components were expressed in both normal and malignant tissues. We conclude that hTERT is a regulatable subunit, whereas the other components are expressed more constantly in cells. Although hTERT has a rate-limiting effect on enzyme activity, the other telomerase subunits (hTR, TEP1, hsp90, p23, dyskerin) participated in full enzyme activity. We hypothesize that once hTERT is expressed, all other telomerase subunits can be assembled to form a highly active holoenzyme.

Citing Articles

A Modular Engineered DNA Nanodevice for Precise Profiling of Telomerase RNA Location and Activity.

Zhang S, Lv J, Zhou Z, Geng P, Li D, Qian R Adv Sci (Weinh). 2024; 12(7):e2409344.

PMID: 39731326 PMC: 11831533. DOI: 10.1002/advs.202409344.


The Influence of and Genetic Variants on the Susceptibility to Multiple Sclerosis.

Rumsaite G, Gedvilaite G, Balnyte R, Kriauciuniene L, Liutkeviciene R J Clin Med. 2023; 12(18).

PMID: 37762804 PMC: 10531829. DOI: 10.3390/jcm12185863.


Regulatory Functions and Mechanisms of Circular RNAs in Hepatic Stellate Cell Activation and Liver Fibrosis.

Nokkeaw A, Thamjamrassri P, Tangkijvanich P, Ariyachet C Cells. 2023; 12(3).

PMID: 36766720 PMC: 9913196. DOI: 10.3390/cells12030378.


Molecular Markers of Telomerase Complex for Patients with Pituitary Adenoma.

Gedvilaite G, Vilkeviciute A, Glebauskiene B, Kriauciuniene L, Liutkeviciene R Brain Sci. 2022; 12(8).

PMID: 35892421 PMC: 9331889. DOI: 10.3390/brainsci12080980.


Berberine Inhibits Telomerase Activity and Induces Cell Cycle Arrest and Telomere Erosion in Colorectal Cancer Cell Line, HCT 116.

Samad M, Saiman M, Abdul Majid N, Karsani S, Yaacob J Molecules. 2021; 26(2).

PMID: 33450878 PMC: 7828342. DOI: 10.3390/molecules26020376.