Urrutia S, Takahashi K
Int J Hematol. 2024; 120(4):439-454.
PMID: 39085680
DOI: 10.1007/s12185-024-03827-8.
Levis M, Perl A, Schiller G, Fathi A, Roboz G, Wang E
Blood Adv. 2024; 8(10):2527-2535.
PMID: 38502195
PMC: 11131057.
DOI: 10.1182/bloodadvances.2023010619.
Ezelarab H, Ali T, Abbas S, Hassan H, Beshr E
BMC Chem. 2023; 17(1):73.
PMID: 37438819
PMC: 10339569.
DOI: 10.1186/s13065-023-00981-8.
Shaban R, Samir N, Nissan Y, Abouzid K
RSC Adv. 2023; 13(25):17074-17096.
PMID: 37293475
PMC: 10245091.
DOI: 10.1039/d3ra00446e.
Dogu M, Tekgunduz A, Deveci B, Korkmaz G, Comert M, Sevindik O
Mediterr J Hematol Infect Dis. 2023; 15(1):e2023031.
PMID: 37180209
PMC: 10171205.
DOI: 10.4084/MJHID.2023.031.
A phase Ib trial of mivavotinib (TAK-659), a dual SYK/FLT3 inhibitor, in patients with relapsed/refractory acute myeloid leukemia.
Pratz K, Kaplan J, Levy M, Bixby D, Burke P, Erba H
Haematologica. 2022; 108(3):705-716.
PMID: 36226495
PMC: 9973464.
DOI: 10.3324/haematol.2022.281216.
FLT3 inhibitors for acute myeloid leukemia: successes, defeats, and emerging paradigms.
Acharya B, Saha D, Armstrong D, Lakkaniga N, Frett B
RSC Med Chem. 2022; 13(7):798-816.
PMID: 35923716
PMC: 9298189.
DOI: 10.1039/d2md00067a.
Targeting stem cells in myelodysplastic syndromes and acute myeloid leukemia.
Woll P, Yoshizato T, Hellstrom-Lindberg E, Fioretos T, Ebert B, Jacobsen S
J Intern Med. 2022; 292(2):262-277.
PMID: 35822488
PMC: 9544124.
DOI: 10.1111/joim.13535.
A review of FLT3 inhibitors in acute myeloid leukemia.
Zhao J, Agarwal S, Ahmad H, Amin K, Bewersdorf J, Zeidan A
Blood Rev. 2021; 52:100905.
PMID: 34774343
PMC: 9846716.
DOI: 10.1016/j.blre.2021.100905.
An updated account on molecular heterogeneity of acute leukemia.
Rahul E, Goel H, Chopra A, Ranjan A, Gupta A, Meena J
Am J Blood Res. 2021; 11(1):22-43.
PMID: 33796387
PMC: 8010602.
LT-171-861, a novel FLT3 inhibitor, shows excellent preclinical efficacy for the treatment of FLT3 mutant acute myeloid leukemia.
Yu Z, Du J, Hui H, Kan S, Huo T, Zhao K
Theranostics. 2021; 11(1):93-106.
PMID: 33391463
PMC: 7681098.
DOI: 10.7150/thno.46593.
Mechanisms Underlying Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia.
Eguchi M, Minami Y, Kuzume A, Chi S
Biomedicines. 2020; 8(8).
PMID: 32722298
PMC: 7459983.
DOI: 10.3390/biomedicines8080245.
Gilteritinib: potent targeting of FLT3 mutations in AML.
Levis M, Perl A
Blood Adv. 2020; 4(6):1178-1191.
PMID: 32208491
PMC: 7094008.
DOI: 10.1182/bloodadvances.2019000174.
FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development.
Kiyoi H, Kawashima N, Ishikawa Y
Cancer Sci. 2019; 111(2):312-322.
PMID: 31821677
PMC: 7004512.
DOI: 10.1111/cas.14274.
The Impact of the Cellular Origin in Acute Myeloid Leukemia: Learning From Mouse Models.
Fisher J, Kalleda N, Stavropoulou V, Schwaller J
Hemasphere. 2019; 3(1):e152.
PMID: 31723801
PMC: 6745939.
DOI: 10.1097/HS9.0000000000000152.
FLT3 inhibitors in acute myeloid leukemia.
Wu M, Li C, Zhu X
J Hematol Oncol. 2018; 11(1):133.
PMID: 30514344
PMC: 6280371.
DOI: 10.1186/s13045-018-0675-4.
Targeting Oncogenic Signaling in Mutant FLT3 Acute Myeloid Leukemia: The Path to Least Resistance.
Staudt D, Murray H, McLachlan T, Alvaro F, Enjeti A, Verrills N
Int J Mol Sci. 2018; 19(10).
PMID: 30332834
PMC: 6214138.
DOI: 10.3390/ijms19103198.
Spotlight on midostaurin in the treatment of FLT3-mutated acute myeloid leukemia and systemic mastocytosis: design, development, and potential place in therapy.
Weisberg E, Sattler M, Manley P, Griffin J
Onco Targets Ther. 2018; 11:175-182.
PMID: 29343975
PMC: 5749544.
DOI: 10.2147/OTT.S127679.
Targeting FLT3 Mutations in Acute Myeloid Leukemia.
El Fakih R, Rasheed W, Hawsawi Y, AlSermani M, Hassanein M
Cells. 2018; 7(1).
PMID: 29316714
PMC: 5789277.
DOI: 10.3390/cells7010004.
Dual inhibition of Fes and Flt3 tyrosine kinases potently inhibits Flt3-ITD+ AML cell growth.
Weir M, Hellwig S, Tan L, Liu Y, Gray N, Smithgall T
PLoS One. 2017; 12(7):e0181178.
PMID: 28727840
PMC: 5519068.
DOI: 10.1371/journal.pone.0181178.