» Articles » PMID: 12117981

Escherichia Coli Shiga-like Toxins Induce Apoptosis and Cleavage of Poly(ADP-ribose) Polymerase Via in Vitro Activation of Caspases

Overview
Journal Infect Immun
Date 2002 Jul 16
PMID 12117981
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Shiga-like toxin-producing Escherichia coli causes hemorrhagic colitis and hemolytic-uremic syndrome in association with the production of Shiga-like toxins, which induce cell death via either necrosis or apoptosis. However, the abilities of different Shiga-like toxins to trigger apoptosis and the sequence of intracellular signaling events mediating the death of epithelial cells have not been completely defined. Fluorescent dye staining with acridine orange and ethidium bromide showed that Shiga-like toxin 1 (Stx1) induced apoptosis of HEp-2 cells in a dose- and time-dependent manner. Stx2 also induced apoptosis in a dose-dependent manner. Apoptosis induced by Stx1 (200 ng/ml) and apoptosis induced by Stx2 (200 ng/ml) were maximal following incubation with cells for 24 h (94.3% +/- 1.8% and 81.7% +/- 5.2% of the cells, respectively). Toxin-treated cells showed characteristic features of apoptosis, including membrane blebbing, DNA fragmentation, chromatin condensation, cell shrinkage, and the formation of apoptotic bodies, as assessed by transmission electron microscopy. Stx2c induced apoptosis weakly even at a high dose (1,000 ng/ml for 24 h; 26.7% +/- 1.3% of the cells), whereas Stx2e did not induce apoptosis of HEp-2 cells. Thin-layer chromatography confirmed that HEp-2 cells express the Stx1-Stx2-Stx2c receptor, globotriaosylceramide (Gb3), but not the Stx2e receptor, globotetraosylceramide (Gb4). Western blot analysis of poly(ADP-ribose) polymerase (PARP), a DNA repair enzyme, demonstrated that incubation with Stx1 and Stx2 induced cleavage, whereas incubation with Stx2e did not result in cleavage of PARP. A pan-caspase inhibitor (Z-VAD-FMK) and a caspase-8-specific inhibitor (Z-IETD-FMK) eliminated, in a dose-dependent fashion, the cleavage of PARP induced by Shiga-like toxins. Caspase-8 activation was confirmed by detection of cleavage of this enzyme by immunoblotting. Cleavage of caspase-9 and the proapoptotic member of the Bcl-2 family BID was also induced by Stx1, as determined by immunoblot analyses. We conclude that different Shiga-like toxins induce different degrees of apoptosis that correlates with toxin binding to the glycolipid receptor Gb3 and that caspases play an integral role in the signal transduction cascade leading to toxin-mediated programmed cell death.

Citing Articles

Preclinical evaluation of the CD38-targeting engineered toxin body MT-0169 against multiple myeloma.

Bruins W, Rentenaar R, Newcomb J, Zheng W, Ruiter R, Baardemans T Hemasphere. 2024; 8(11):e70039.

PMID: 39544624 PMC: 11561653. DOI: 10.1002/hem3.70039.


Ningxiang Pig-Derived HNAU0205 Alleviates ETEC-Induced Intestinal Apoptosis, Oxidative Damage, and Inflammation in Piglets.

Wu Z, Zhang L, Li H, Li J, Zhang Z, Tan B Animals (Basel). 2024; 14(15).

PMID: 39123683 PMC: 11310999. DOI: 10.3390/ani14152156.


The Fatal Role of Enterohaemorrhagic Escherichia coli Shiga Toxin-associated Extracellular Vesicles in Host Cells.

Lee K, Park J, Jeong Y, Lee M J Microbiol. 2023; 61(8):715-727.

PMID: 37665555 DOI: 10.1007/s12275-023-00066-0.


Assessment of interleukin-10 promoter variant (-1082A/G) and cytokine production in patients with hemolytic uremic syndrome.

Mongelos M, Sosa F, Pineda G, Fiorentino G, Santiago A, Abelleyro M Front Pediatr. 2023; 11:1210158.

PMID: 37425258 PMC: 10327435. DOI: 10.3389/fped.2023.1210158.


Shiga Toxins as Antitumor Tools.

Robert A, Wiels J Toxins (Basel). 2021; 13(10).

PMID: 34678982 PMC: 8538568. DOI: 10.3390/toxins13100690.


References
1.
van Setten P, van Hinsbergh V, van Der Velden T, van de Kar N, Vermeer M, Mahan J . Effects of TNF alpha on verocytotoxin cytotoxicity in purified human glomerular microvascular endothelial cells. Kidney Int. 1997; 51(4):1245-56. DOI: 10.1038/ki.1997.170. View

2.
Abreu M, Palladino A, Arnold E, Kwon R, McRoberts J . Modulation of barrier function during Fas-mediated apoptosis in human intestinal epithelial cells. Gastroenterology. 2000; 119(6):1524-36. DOI: 10.1053/gast.2000.20232. View

3.
Waddell T, Coomber B, Gyles C . Localization of potential binding sites for the edema disease verotoxin (VT2e) in pigs. Can J Vet Res. 1998; 62(2):81-6. PMC: 1189452. View

4.
Wei M, LINDSTEN T, Mootha V, Weiler S, Gross A, Ashiya M . tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 2000; 14(16):2060-71. PMC: 316859. View

5.
Degrandis S, Law H, Brunton J, Gyles C, Lingwood C . Globotetraosylceramide is recognized by the pig edema disease toxin. J Biol Chem. 1989; 264(21):12520-5. View