Jo H, Lee Y, Son S, Jang D, Kwon T, Ha Y
Front Pharmacol. 2025; 15:1471024.
PMID: 39764462
PMC: 11700980.
DOI: 10.3389/fphar.2024.1471024.
Hamouda H, Sayed R, Eid N, El-Sayeh B
Neurochem Res. 2024; 49(4):1017-1033.
PMID: 38184805
PMC: 10901959.
DOI: 10.1007/s11064-023-04083-8.
Jang M, Choi J, Jang D, Cho I
Cells. 2023; 12(5).
PMID: 36899922
PMC: 10000367.
DOI: 10.3390/cells12050786.
Kim E, Jang M, Lee M, Choi J, Lee S, Kim S
Front Pharmacol. 2017; 8:673.
PMID: 29033839
PMC: 5627181.
DOI: 10.3389/fphar.2017.00673.
Piri N, Kwong J, Gu L, Caprioli J
Prog Retin Eye Res. 2016; 52:22-46.
PMID: 27017896
PMC: 4842330.
DOI: 10.1016/j.preteyeres.2016.03.001.
Sulforaphane Ameliorates 3-Nitropropionic Acid-Induced Striatal Toxicity by Activating the Keap1-Nrf2-ARE Pathway and Inhibiting the MAPKs and NF-κB Pathways.
Jang M, Cho I
Mol Neurobiol. 2015; 53(4):2619-35.
PMID: 26096705
DOI: 10.1007/s12035-015-9230-2.
Geldanamycin attenuates 3‑nitropropionic acid‑induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells.
Choi Y, Kim N, Lim M, Lee H, Kim S, Chun W
Int J Mol Med. 2014; 34(1):24-34.
PMID: 24756698
PMC: 4072345.
DOI: 10.3892/ijmm.2014.1747.
Immunotherapy of tuberculosis with Mycobacterium leprae Hsp65 as a DNA vaccine triggers cross-reactive antibodies against mammalian Hsp60 but not pathological autoimmunity.
Doimo N, Zarate-Blades C, Rodrigues R, Tefe-Silva C, Trotte M, Souza P
Hum Vaccin Immunother. 2014; 10(5):1238-43.
PMID: 24607935
PMC: 4896578.
DOI: 10.4161/hv.28249.
Heat shock transcription factor-1 suppresses apoptotic cell death and ROS generation in 3-nitropropionic acid-stimulated striatal cells.
Choi Y, Om J, Kim N, Chang J, Park J, Kim J
Mol Cell Biochem. 2012; 375(1-2):59-67.
PMID: 23225230
DOI: 10.1007/s11010-012-1528-z.
Modulation of the ASK1-MKK3/6-p38/MAPK signalling pathway mediates sildenafil protection against chemical hypoxia caused by malonate.
Barros-Minones L, Orejana L, Goni-Allo B, Suquia V, Hervias I, Aguirre N
Br J Pharmacol. 2012; 168(8):1820-34.
PMID: 23186227
PMC: 3623053.
DOI: 10.1111/bph.12071.
Convergent pathogenic pathways in Alzheimer's and Huntington's diseases: shared targets for drug development.
Ehrnhoefer D, Wong B, Hayden M
Nat Rev Drug Discov. 2011; 10(11):853-67.
PMID: 22015920
PMC: 3206090.
DOI: 10.1038/nrd3556.
D-β-hydroxybutyrate is protective in mouse models of Huntington's disease.
Lim S, Chesser A, Grima J, Rappold P, Blum D, Przedborski S
PLoS One. 2011; 6(9):e24620.
PMID: 21931779
PMC: 3171454.
DOI: 10.1371/journal.pone.0024620.
The HSP70 molecular chaperone is not beneficial in a mouse model of alpha-synucleinopathy.
Shimshek D, Mueller M, Wiessner C, Schweizer T, van der Putten P
PLoS One. 2010; 5(4):e10014.
PMID: 20368804
PMC: 2848858.
DOI: 10.1371/journal.pone.0010014.
Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease.
Graham R, Pouladi M, Joshi P, Lu G, Deng Y, Wu N
J Neurosci. 2009; 29(7):2193-204.
PMID: 19228972
PMC: 2729178.
DOI: 10.1523/JNEUROSCI.5473-08.2009.
Genome-wide transcriptome profiling of region-specific vulnerability to oxidative stress in the hippocampus.
Wang X, Pal R, Chen X, Kumar K, Kim O, Michaelis E
Genomics. 2007; 90(2):201-12.
PMID: 17553663
PMC: 2065755.
DOI: 10.1016/j.ygeno.2007.03.007.
N-methyl-D-aspartate receptors are involved in the quinolinic acid, but not in the malonate pro-oxidative activity in vitro.
Puntel R, Nogueira C, Rocha J
Neurochem Res. 2005; 30(3):417-24.
PMID: 16018587
DOI: 10.1007/s11064-005-2617-0.
Genetic and environmental factors in the pathogenesis of Huntington's disease.
Dellen A, Hannan A
Neurogenetics. 2004; 5(1):9-17.
PMID: 14745585
DOI: 10.1007/s10048-003-0169-5.
Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice.
Duan W, Guo Z, Jiang H, Ware M, Li X, Mattson M
Proc Natl Acad Sci U S A. 2003; 100(5):2911-6.
PMID: 12589027
PMC: 151440.
DOI: 10.1073/pnas.0536856100.