Toussaint A, Higgins N
Viruses. 2023; 15(3).
PMID: 36992345
PMC: 10052514.
DOI: 10.3390/v15030637.
Bonato A, Marenduzzo D, Michieletto D, Orlandini E
Proc Natl Acad Sci U S A. 2022; 119(44):e2207728119.
PMID: 36279471
PMC: 9636914.
DOI: 10.1073/pnas.2207728119.
Golovinas E, Rutkauskas D, Manakova E, Jankunec M, Silanskas A, Sasnauskas G
Sci Rep. 2021; 11(1):4518.
PMID: 33633170
PMC: 7907199.
DOI: 10.1038/s41598-021-83889-4.
Kim S, Darcy I
Biol Open. 2020; 9(4).
PMID: 32184229
PMC: 7132813.
DOI: 10.1242/bio.048603.
Harshey R
Microbiol Spectr. 2015; 2(5).
PMID: 26104374
PMC: 4486318.
DOI: 10.1128/microbiolspec.MDNA3-0007-2014.
Controlling DNA degradation from a distance: a new role for the Mu transposition enhancer.
Choi W, Saha R, Jang S, Harshey R
Mol Microbiol. 2014; 94(3):595-608.
PMID: 25256747
PMC: 4213243.
DOI: 10.1111/mmi.12781.
Transposable prophage Mu is organized as a stable chromosomal domain of E. coli.
Saha R, Lou Z, Meng L, Harshey R
PLoS Genet. 2013; 9(11):e1003902.
PMID: 24244182
PMC: 3820752.
DOI: 10.1371/journal.pgen.1003902.
The Mu story: how a maverick phage moved the field forward.
Harshey R
Mob DNA. 2012; 3(1):21.
PMID: 23217166
PMC: 3562280.
DOI: 10.1186/1759-8753-3-21.
Application of the bacteriophage Mu-driven system for the integration/amplification of target genes in the chromosomes of engineered Gram-negative bacteria--mini review.
Akhverdyan V, Gak E, Tokmakova I, Stoynova N, Yomantas Y, Mashko S
Appl Microbiol Biotechnol. 2011; 91(4):857-71.
PMID: 21698377
PMC: 3145075.
DOI: 10.1007/s00253-011-3416-y.
Immunity of replicating Mu to self-integration: a novel mechanism employing MuB protein.
Ge J, Lou Z, Harshey R
Mob DNA. 2010; 1(1):8.
PMID: 20226074
PMC: 2837660.
DOI: 10.1186/1759-8753-1-8.
Congruence of in vivo and in vitro insertion patterns in hot E. coli gene targets of transposable element Mu: opposing roles of MuB in target capture and integration.
Ge J, Harshey R
J Mol Biol. 2008; 380(4):598-607.
PMID: 18556020
PMC: 2529481.
DOI: 10.1016/j.jmb.2008.05.032.
The dynamic Mu transpososome: MuB activation prevents disintegration.
Lemberg K, Schweidenback C, Baker T
J Mol Biol. 2007; 374(5):1158-71.
PMID: 17988683
PMC: 2237893.
DOI: 10.1016/j.jmb.2007.09.079.
Coloring the Mu transpososome.
Darcy I, Chang J, Druivenga N, McKinney C, Medikonduri R, Mills S
BMC Bioinformatics. 2006; 7:435.
PMID: 17022825
PMC: 1636074.
DOI: 10.1186/1471-2105-7-435.
Dissection of the bacteriophage Mu strong gyrase site (SGS): significance of the SGS right arm in Mu biology and DNA gyrase mechanism.
Oram M, Travers A, Howells A, Maxwell A, Pato M
J Bacteriol. 2005; 188(2):619-32.
PMID: 16385052
PMC: 1347280.
DOI: 10.1128/JB.188.2.619-632.2006.
Enhancer-independent Mu transposition from two topologically distinct synapses.
Yin Z, Harshey R
Proc Natl Acad Sci U S A. 2005; 102(52):18884-9.
PMID: 16380426
PMC: 1323169.
DOI: 10.1073/pnas.0506873102.
Measuring chromosome dynamics on different time scales using resolvases with varying half-lives.
Stein R, Deng S, Higgins N
Mol Microbiol. 2005; 56(4):1049-61.
PMID: 15853889
PMC: 1373788.
DOI: 10.1111/j.1365-2958.2005.04588.x.
3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition.
Yuan J, Beniac D, Chaconas G, Ottensmeyer F
Genes Dev. 2005; 19(7):840-52.
PMID: 15774720
PMC: 1074321.
DOI: 10.1101/gad.1291405.
Mu-like prophage strong gyrase site sequences: analysis of properties required for promoting efficient mu DNA replication.
Oram M, Pato M
J Bacteriol. 2004; 186(14):4575-84.
PMID: 15231790
PMC: 438558.
DOI: 10.1128/JB.186.14.4575-4584.2004.
A unique right end-enhancer complex precedes synapsis of Mu ends: the enhancer is sequestered within the transpososome throughout transposition.
Pathania S, Jayaram M, Harshey R
EMBO J. 2003; 22(14):3725-36.
PMID: 12853487
PMC: 165624.
DOI: 10.1093/emboj/cdg354.