» Articles » PMID: 12084921

Specific Zinc-finger Architecture Required for HIV-1 Nucleocapsid Protein's Nucleic Acid Chaperone Function

Overview
Specialty Science
Date 2002 Jun 27
PMID 12084921
Citations 64
Authors
Affiliations
Soon will be listed here.
Abstract

The nucleocapsid protein (NC) of HIV type 1 (HIV-1) is a nucleic acid chaperone that facilitates the rearrangement of nucleic acid secondary structure during reverse transcription. HIV-1 NC contains two CCHC-type zinc binding domains. Here, we use optical tweezers to stretch single lambda-DNA molecules through the helix-to-coil transition in the presence of wild-type and several mutant forms of HIV-1 NC with altered zinc-finger domains. Although all forms of NC lowered the cooperativity of the DNA helix-coil transition, subtle changes in the zinc-finger structures reduced NC's effect on the transition. The change in cooperativity of the DNA helix-coil transition correlates strongly with in vitro nucleic acid chaperone activity measurements and in vivo HIV-1 replication studies using the same NC mutants. Moreover, Moloney murine leukemia virus NC, which contains a single zinc finger, had little effect on transition cooperativity. These results suggest that a specific two-zinc-finger architecture is required to destabilize nucleic acids for optimal chaperone activity during reverse transcription in complex retroviruses such as HIV-1.

Citing Articles

Cationic Residues of the HIV-1 Nucleocapsid Protein Enable DNA Condensation to Maintain Viral Core Particle Stability during Reverse Transcription.

Gien H, Morse M, McCauley M, Rouzina I, Gorelick R, Williams M Viruses. 2024; 16(6).

PMID: 38932164 PMC: 11209390. DOI: 10.3390/v16060872.


The human cellular protein NoL12 is a specific partner of the HIV-1 nucleocapsid protein NCp7.

Zgheib S, Taha N, Zeiger M, Glushonkov O, Lequeu T, Anton H J Virol. 2023; 97(9):e0004023.

PMID: 37695057 PMC: 10537728. DOI: 10.1128/jvi.00040-23.


Probing the structure of human tRNA in the presence of ligands using docking, MD simulations and MSM analysis.

V N Uppuladinne M, Achalere A, Sonavane U, Joshi R RSC Adv. 2023; 13(37):25778-25796.

PMID: 37655355 PMC: 10467029. DOI: 10.1039/d3ra03694d.


Tackling COVID-19 Using Antiviral Nanocoating's-Recent Progress and Future Challenges.

Ghosal K Part Part Syst Charact. 2023; 40(1):2200154.

PMID: 36711425 PMC: 9874835. DOI: 10.1002/ppsc.202200154.


Exploring the potential function of trace elements in human health: a therapeutic perspective.

Islam M, Akash S, Jony M, Alam M, Nowrin F, Rahman M Mol Cell Biochem. 2023; 478(10):2141-2171.

PMID: 36637616 DOI: 10.1007/s11010-022-04638-3.


References
1.
Gorelick R, Gagliardi T, Bosche W, Wiltrout T, Coren L, Chabot D . Strict conservation of the retroviral nucleocapsid protein zinc finger is strongly influenced by its role in viral infection processes: characterization of HIV-1 particles containing mutant nucleocapsid zinc-coordinating sequences. Virology. 1999; 256(1):92-104. DOI: 10.1006/viro.1999.9629. View

2.
Zhang Y, Barklis E . Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation. J Virol. 1995; 69(9):5716-22. PMC: 189431. DOI: 10.1128/JVI.69.9.5716-5722.1995. View

3.
Smith S, Cui Y, Bustamante C . Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996; 271(5250):795-9. DOI: 10.1126/science.271.5250.795. View

4.
Urbaneja M, Kane B, Johnson D, Gorelick R, Henderson L, Casas-Finet J . Binding properties of the human immunodeficiency virus type 1 nucleocapsid protein p7 to a model RNA: elucidation of the structural determinants for function. J Mol Biol. 1999; 287(1):59-75. DOI: 10.1006/jmbi.1998.2521. View

5.
Guo J, Wu T, Anderson J, Kane B, Johnson D, Gorelick R . Zinc finger structures in the human immunodeficiency virus type 1 nucleocapsid protein facilitate efficient minus- and plus-strand transfer. J Virol. 2000; 74(19):8980-8. PMC: 102094. DOI: 10.1128/jvi.74.19.8980-8988.2000. View