» Articles » PMID: 12077213

Phosphodiesterase 1B Knock-out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopamine Agonists and Display Impaired Spatial Learning

Overview
Journal J Neurosci
Specialty Neurology
Date 2002 Jun 22
PMID 12077213
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Using homologous recombination, we generated mice lacking phosphodiesterase-mediated (PDE1B) cyclic nucleotide-hydrolyzing activity. PDE1B(-/-) mice showed exaggerated hyperactivity after acute D-methamphetamine administration. Striatal slices from PDE1B(-/-) mice exhibited increased levels of phospho-Thr34 DARPP-32 and phospho-Ser845 GluR1 after dopamine D1 receptor agonist or forskolin stimulation. PDE1B(-/-) and PDE1B(+/-) mice demonstrated Morris maze spatial-learning deficits. These results indicate that enhancement of cyclic nucleotide signaling by inactivation of PDE1B-mediated cyclic nucleotide hydrolysis plays a significant role in dopaminergic function through the DARPP-32 and related transduction pathways.

Citing Articles

Circuit-Wide Gene Network Analysis Reveals Sex-Specific Roles for Phosphodiesterase 1b in Cocaine Addiction.

Teague C, Markovic T, Zhou X, Martinez-Rivera F, Minier-Toribio A, Zinsmaier A J Neurosci. 2024; 44(23).

PMID: 38637154 PMC: 11154853. DOI: 10.1523/JNEUROSCI.1327-23.2024.


Targeting Striatal Glutamate and Phosphodiesterases to Control L-DOPA-Induced Dyskinesia.

Kochoian B, Bure C, Papa S Cells. 2023; 12(23).

PMID: 38067182 PMC: 10706484. DOI: 10.3390/cells12232754.


Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis.

Kolb M, Crestani B, Maher T Eur Respir Rev. 2023; 32(167).

PMID: 36813290 PMC: 9949383. DOI: 10.1183/16000617.0206-2022.


Phosphodiesterase 9 inhibition prolongs the antiparkinsonian action of l-DOPA in parkinsonian non-human primates.

Masilamoni G, Sinon C, Kochoian B, Singh A, McRiner A, Leventhal L Neuropharmacology. 2022; 212:109060.

PMID: 35461880 PMC: 11698471. DOI: 10.1016/j.neuropharm.2022.109060.


Challenges on Cyclic Nucleotide Phosphodiesterases Imaging with Positron Emission Tomography: Novel Radioligands and (Pre-)Clinical Insights since 2016.

Schroder S, Scheunemann M, Wenzel B, Brust P Int J Mol Sci. 2021; 22(8).

PMID: 33917199 PMC: 8068090. DOI: 10.3390/ijms22083832.


References
1.
Davis R, Cherry J, Dauwalder B, Han P, Skoulakis E . The cyclic AMP system and Drosophila learning. Mol Cell Biochem. 1995; 149-150:271-8. DOI: 10.1007/978-1-4615-2015-3_31. View

2.
Bach M, Hawkins R, Osman M, Kandel E, Mayford M . Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell. 1995; 81(6):905-15. DOI: 10.1016/0092-8674(95)90010-1. View

3.
Hiroi N, Fienberg A, Haile C, Alburges M, Hanson G, Greengard P . Neuronal and behavioural abnormalities in striatal function in DARPP-32-mutant mice. Eur J Neurosci. 1999; 11(3):1114-8. DOI: 10.1046/j.1460-9568.1999.00570.x. View

4.
Sharma R, Wang J . Differential regulation of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isoenzymes by cyclic AMP-dependent protein kinase and calmodulin-dependent phosphatase. Proc Natl Acad Sci U S A. 1985; 82(9):2603-7. PMC: 397612. DOI: 10.1073/pnas.82.9.2603. View

5.
Borisy F, Ronnett G, Cunningham A, Juilfs D, Beavo J, Snyder S . Calcium/calmodulin-activated phosphodiesterase expressed in olfactory receptor neurons. J Neurosci. 1992; 12(3):915-23. PMC: 6576063. View