» Articles » PMID: 12073735

Degradation of Immunoglobulins, Protease Inhibitors and Interleukin-1 by a Secretory Proteinase of Acanthamoeba Castellanii

Overview
Specialty Parasitology
Date 2002 Jun 21
PMID 12073735
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The effect of a secretory proteinase from the pathogenic amoebae Acanthamoeba castellanii on host's defense-oriented or regulatory proteins such as immunoglobulins, interleukin-1, and protease inhibitors was investigated. The enzyme was found to degrade secretory immunoglobulin A (sIgA), IgG, and IgM. It also degraded interleukin-1 alpha (IL-1 alpha) and IL-1 beta. Its activity was not inhibited by endogenous protease inhibitors, such as alpha 2-macroglobulin, alpha 1-trypsin inhibitor, and alpha 2-antiplasmin. Furthermore, the enzyme rapidly degraded those endogenous protease inhibitors as well. The degradation of host's defense-oriented or regulatory proteins by the Acanthamoeba proteinase suggested that the enzyme might be an important virulence factor in the pathogenesis of Acanthamoeba infection.

Citing Articles

Biological characteristics and pathogenicity of .

Wang Y, Jiang L, Zhao Y, Ju X, Wang L, Jin L Front Microbiol. 2023; 14:1147077.

PMID: 37089530 PMC: 10113681. DOI: 10.3389/fmicb.2023.1147077.


Genetic Background Affects the Mucosal Secretory IgA Levels, Parasite Burden, Lung Inflammation, and Mouse Susceptibility to Infection.

Oliveira L, Nogueira D, Geraldi R, Barbosa F, Amorim C, Gazzinelli-Guimaraes A Infect Immun. 2021; 90(2):e0059521.

PMID: 34807734 PMC: 8852741. DOI: 10.1128/IAI.00595-21.


Identification and characterization of a secreted M28 aminopeptidase protein in Acanthamoeba.

Huang J, Chang Y, Shih M, Lin W, Huang F Parasitol Res. 2019; 118(6):1865-1874.

PMID: 31065830 DOI: 10.1007/s00436-019-06332-8.


Comparison of Proteins Secreted into Extracellular Space of Pathogenic and Non-pathogenic Acanthamoeba castellanii.

Moon E, Choi H, Park S, Kong H, Quan F Korean J Parasitol. 2019; 56(6):553-558.

PMID: 30630275 PMC: 6327195. DOI: 10.3347/kjp.2018.56.6.553.


An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment.

Lorenzo-Morales J, Khan N, Walochnik J Parasite. 2015; 22:10.

PMID: 25687209 PMC: 4330640. DOI: 10.1051/parasite/2015010.


References
1.
Leher H, Alizadeh H, Taylor W, Shea A, Silvany R, Van Klink F . Role of mucosal IgA in the resistance to Acanthamoeba keratitis. Invest Ophthalmol Vis Sci. 1998; 39(13):2666-73. View

2.
Van Klink F, Leher H, Jager M, Alizadeh H, Taylor W, Niederkorn J . Systemic immune response to Acanthamoeba keratitis in the Chinese hamster. Ocul Immunol Inflamm. 1998; 5(4):235-44. DOI: 10.3109/09273949709085064. View

3.
Leher H, Silvany R, Alizadeh H, Huang J, Niederkorn J . Mannose induces the release of cytopathic factors from Acanthamoeba castellanii. Infect Immun. 1998; 66(1):5-10. PMC: 107851. DOI: 10.1128/IAI.66.1.5-10.1998. View

4.
Na B, Kim J, Song C . Characterization and pathogenetic role of proteinase from Acanthamoeba castellanii. Microb Pathog. 2001; 30(1):39-48. DOI: 10.1006/mpat.2000.0403. View

5.
Laemmli U . Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259):680-5. DOI: 10.1038/227680a0. View