Martin K, Papadoyannis E, Schiavo J, Fadaei S, Issa H, Song S
Nat Neurosci. 2024; 27(11):2152-2166.
PMID: 39284963
DOI: 10.1038/s41593-024-01767-4.
Shinji Y, Okuno H, Hirata Y
Front Neurosci. 2024; 18:1220908.
PMID: 38726031
PMC: 11079192.
DOI: 10.3389/fnins.2024.1220908.
Yang Q, Vazquez A, Cui X
iScience. 2024; 27(4):109371.
PMID: 38510113
PMC: 10951986.
DOI: 10.1016/j.isci.2024.109371.
Spivak L, Someck S, Levi A, Sivroni S, Stark E
Sci Adv. 2024; 10(3):eadj4411.
PMID: 38232172
PMC: 10793958.
DOI: 10.1126/sciadv.adj4411.
Cline H, Lau M, Hiramoto M
Neuroscience. 2022; 508:3-18.
PMID: 36470479
PMC: 9839526.
DOI: 10.1016/j.neuroscience.2022.11.032.
Short-Term Visual Experience Leads to Potentiation of Spontaneous Activity in Mouse Superior Colliculus.
Yu Q, Fu H, Wang G, Zhang J, Yan B
Neurosci Bull. 2021; 37(3):353-368.
PMID: 33394455
PMC: 7954964.
DOI: 10.1007/s12264-020-00622-3.
Eye movements shape visual learning.
Laamerad P, Guitton D, Pack C
Proc Natl Acad Sci U S A. 2020; 117(14):8203-8211.
PMID: 32209663
PMC: 7149482.
DOI: 10.1073/pnas.1913851117.
Plasticity in the Structure of Visual Space.
Song C, Haun A, Tononi G
eNeuro. 2017; 4(3).
PMID: 28660245
PMC: 5482114.
DOI: 10.1523/ENEURO.0080-17.2017.
Flashing Lights Induce Prolonged Distortions in Visual Cortical Responses and Visual Perception.
Minamisawa G, Funayama K, Matsumoto N, Matsuki N, Ikegaya Y
eNeuro. 2017; 4(3).
PMID: 28508035
PMC: 5429040.
DOI: 10.1523/ENEURO.0304-16.2017.
Learning by stimulation avoidance: A principle to control spiking neural networks dynamics.
Sinapayen L, Masumori A, Ikegami T
PLoS One. 2017; 12(2):e0170388.
PMID: 28158309
PMC: 5291507.
DOI: 10.1371/journal.pone.0170388.
An Evolutionarily Conserved Mechanism for Activity-Dependent Visual Circuit Development.
Pratt K, Hiramoto M, Cline H
Front Neural Circuits. 2016; 10:79.
PMID: 27818623
PMC: 5073143.
DOI: 10.3389/fncir.2016.00079.
Spatiotemporal properties of microsaccades: Model predictions and experimental tests.
Zhou J, Yuan W, Zhou Z
Sci Rep. 2016; 6:35255.
PMID: 27739541
PMC: 5064323.
DOI: 10.1038/srep35255.
Exploring the Use of Sensorial LTP/LTD-Like Stimulation to Modulate Human Performance for Complex Visual Stimuli.
Pegado F, Vankrunkelsven H, Steyaert J, Boets B, Op de Beeck H
PLoS One. 2016; 11(6):e0158312.
PMID: 27341210
PMC: 4920386.
DOI: 10.1371/journal.pone.0158312.
Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.
Tully P, Linden H, Hennig M, Lansner A
PLoS Comput Biol. 2016; 12(5):e1004954.
PMID: 27213810
PMC: 4877102.
DOI: 10.1371/journal.pcbi.1004954.
Synaptic plasticity as a cortical coding scheme.
Froemke R, Schreiner C
Curr Opin Neurobiol. 2015; 35:185-99.
PMID: 26497430
PMC: 4641776.
DOI: 10.1016/j.conb.2015.10.003.
Network evolution induced by asynchronous stimuli through spike-timing-dependent plasticity.
Yuan W, Zhou J, Zhou C
PLoS One. 2014; 8(12):e84644.
PMID: 24391971
PMC: 3877323.
DOI: 10.1371/journal.pone.0084644.
Impaired development and competitive refinement of the cortical frequency map in tumor necrosis factor-α-deficient mice.
Yang S, Zhang L, Gibboni R, Weiner B, Bao S
Cereb Cortex. 2013; 24(7):1956-65.
PMID: 23448874
PMC: 4110455.
DOI: 10.1093/cercor/bht053.
Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo.
Pawlak V, Greenberg D, Sprekeler H, Gerstner W, Kerr J
Elife. 2013; 2:e00012.
PMID: 23359858
PMC: 3552422.
DOI: 10.7554/eLife.00012.
The spike-timing dependence of plasticity.
Feldman D
Neuron. 2012; 75(4):556-71.
PMID: 22920249
PMC: 3431193.
DOI: 10.1016/j.neuron.2012.08.001.
Sensory experience modifies spontaneous state dynamics in a large-scale barrel cortical model.
Phoka E, Wildie M, Schultz S, Barahona M
J Comput Neurosci. 2012; 33(2):323-39.
PMID: 22403037
DOI: 10.1007/s10827-012-0388-6.