Krawic C, Zhitkovich A
Adv Pharmacol. 2023; 96:25-46.
PMID: 36858775
PMC: 10069994.
DOI: 10.1016/bs.apha.2022.07.003.
Soni S, Singh R, Tiwari S
Arch Microbiol. 2022; 204(10):614.
PMID: 36088522
PMC: 9464057.
DOI: 10.1007/s00203-022-03230-z.
Rahman Z, Thomas L
Front Microbiol. 2021; 11:619766.
PMID: 33584585
PMC: 7875889.
DOI: 10.3389/fmicb.2020.619766.
Enbaia S, Eswayah A, Hondow N, Gardiner P, Smith T
Appl Environ Microbiol. 2020; 87(2).
PMID: 33127813
PMC: 7783347.
DOI: 10.1128/AEM.00947-20.
ONeill A, Beaupre B, Zheng Y, Liu D, Moran G
Appl Environ Microbiol. 2020; 86(22).
PMID: 32887719
PMC: 7642083.
DOI: 10.1128/AEM.01758-20.
Successive use of microorganisms to remove chromium from wastewater.
Elahi A, Arooj I, Bukhari D, Rehman A
Appl Microbiol Biotechnol. 2020; 104(9):3729-3743.
PMID: 32172324
DOI: 10.1007/s00253-020-10533-y.
Potential of Bacterial Isolates from a Stream in Manaus-Amazon to Bioremediate Chromium-Contaminated Environments.
Teles Y, Castro L, Junior E, do Nascimento A, da Silva H, Costa R
Water Air Soil Pollut. 2018; 229(8):266.
PMID: 30147191
PMC: 6096555.
DOI: 10.1007/s11270-018-3903-1.
Functional annotation of hypothetical proteins from the Exiguobacterium antarcticum strain B7 reveals proteins involved in adaptation to extreme environments, including high arsenic resistance.
da Costa W, Araujo C, Dias L, Pereira L, Thyeska Castro Alves J, Araujo F
PLoS One. 2018; 13(6):e0198965.
PMID: 29940001
PMC: 6016940.
DOI: 10.1371/journal.pone.0198965.
The naphthalene catabolic protein NahG plays a key role in hexavalent chromium reduction in Pseudomonas brassicacearum LZ-4.
Huang H, Tao X, Jiang Y, Khan A, Wu Q, Yu X
Sci Rep. 2017; 7(1):9670.
PMID: 28852154
PMC: 5575117.
DOI: 10.1038/s41598-017-10469-w.
Role of Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 as Bioindicators and Immobilizers of Chromium in a Contaminated Natural Environment.
Millach L, Sole A, Esteve I
Biomed Res Int. 2015; 2015:519769.
PMID: 26167488
PMC: 4488086.
DOI: 10.1155/2015/519769.
Biochemical and molecular mechanisms involved in simultaneous phenol and Cr(VI) removal by Acinetobacter guillouiae SFC 500-1A.
Ontanon O, Gonzalez P, Agostini E
Environ Sci Pollut Res Int. 2015; 22(17):13014-23.
PMID: 25916475
DOI: 10.1007/s11356-015-4571-y.
A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi.
Soni S, Singh R, Awasthi A, Kalra A
Environ Sci Pollut Res Int. 2013; 21(3):1971-1979.
PMID: 24014225
DOI: 10.1007/s11356-013-2098-7.
Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups.
Mary Mangaiyarkarasi M, Vincent S, Janarthanan S, Rao T, Tata B
Saudi J Biol Sci. 2013; 18(2):157-67.
PMID: 23961119
PMC: 3730869.
DOI: 10.1016/j.sjbs.2010.12.003.
Genomic and physiological characterization of the chromate-reducing, aquifer-derived Firmicute Pelosinus sp. strain HCF1.
Beller H, Han R, Karaoz U, Lim H, Brodie E
Appl Environ Microbiol. 2012; 79(1):63-73.
PMID: 23064329
PMC: 3536105.
DOI: 10.1128/AEM.02496-12.
In vitro Cr(VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil.
Soni S, Singh R, Awasthi A, Singh M, Kalra A
Environ Sci Pollut Res Int. 2012; 20(3):1661-74.
PMID: 22983604
DOI: 10.1007/s11356-012-1178-4.
Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii.
Jin H, Zhang Y, Buchko G, Varnum S, Robinson H, Squier T
PLoS One. 2012; 7(8):e42432.
PMID: 22879982
PMC: 3412864.
DOI: 10.1371/journal.pone.0042432.
Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil.
Kavita B, Keharia H
3 Biotech. 2012; 2(1):79-87.
PMID: 22582159
PMC: 3339614.
DOI: 10.1007/s13205-011-0038-0.
Crystal structure of ChrR--a quinone reductase with the capacity to reduce chromate.
Eswaramoorthy S, Poulain S, Hienerwadel R, Bremond N, Sylvester M, Zhang Y
PLoS One. 2012; 7(4):e36017.
PMID: 22558308
PMC: 3338774.
DOI: 10.1371/journal.pone.0036017.
Cr-(III)-organic compounds treatment causes genotoxicity and changes in DNA and protein level in Saccharomyces cerevisiae.
Chatterjee N, Luo Z
Ecotoxicology. 2010; 19(4):593-603.
PMID: 20066492
DOI: 10.1007/s10646-009-0420-4.
Ferredoxin-NADP+ reductase from Pseudomonas putida functions as a ferric reductase.
Yeom J, Jeon C, Madsen E, Park W
J Bacteriol. 2008; 191(5):1472-9.
PMID: 19114475
PMC: 2648195.
DOI: 10.1128/JB.01473-08.