» Articles » PMID: 12000034

Sensitization Studies in Chemically Intolerant Individuals: Implications for Individual Difference Research

Overview
Specialty Science
Date 2002 May 10
PMID 12000034
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Chemical intolerance (CI) is an individual difference trait in which persons report feeling ill in multiple physiological systems from low levels of a wide range of chemically unrelated environmental substances. This paper discusses the neural sensitization model for progressive host amplification of polysymptomatic responses elicited by chemical exposures following an initiating event. The sensitization model accommodates hypotheses for initiating and eliciting CI in human populations that involve both environmental chemicals and physical or psychological stressors. Recent studies in this laboratory have demonstrated sensitization in individuals with CI over repeated sessions for dependent variables such as electroencephalographic (EEG) activity and diastolic blood pressure. Psychological distress variables alone do not explain these findings. Individuals with CI and/or vulnerability to sensitization share specific characteristics, for example, female gender, certain genetic background (offspring of alcohol-preferring parents), and personal preference for high sugar/ carbohydrate intake. Overall, the data suggest that the 15-30% of the general population who report heightened CI are highly sensitizable. Sensitizability may serve an adaptive, sentinel function in threatening environments with poor signal-to-noise ratios. However, as sensitization gradually shifts operating set points of physiological systems out of the normal range in response to allostatic load, this process may contribute to the development of chronic, polysymptomatic health conditions such as multiple chemical sensitivity and/or fibromyalgia. Individual response specificity and stereotypy rather than toxicant properties may determine which types of central, autonomic, and/or peripheral nervous system dysfunctions manifest at subclinical and clinical levels.

Citing Articles

Gene expression profiling in persons with multiple chemical sensitivity before and after a controlled n-butanol exposure session.

Dantoft T, Skovbjerg S, Andersson L, Claeson A, Engkilde K, Lind N BMJ Open. 2017; 7(2):e013879.

PMID: 28232466 PMC: 5337747. DOI: 10.1136/bmjopen-2016-013879.


Multidimensional assessment of self-reported chemical intolerance and its impact on chemosensory effects during ammonia exposure.

Pacharra M, Kleinbeck S, Schaper M, Blaszkewicz M, van Thriel C Int Arch Occup Environ Health. 2016; 89(6):947-59.

PMID: 27126704 DOI: 10.1007/s00420-016-1134-6.


Chemosensory perception, symptoms and autonomic responses during chemical exposure in multiple chemical sensitivity.

Andersson L, Claeson A, Dantoft T, Skovbjerg S, Lind N, Nordin S Int Arch Occup Environ Health. 2015; 89(1):79-88.

PMID: 25917753 DOI: 10.1007/s00420-015-1053-y.


Xenobiotic sensor- and metabolism-related gene variants in environmental sensitivity-related illnesses: a survey on the Italian population.

Caccamo D, Cesareo E, Mariani S, Raskovic D, Ientile R, Curro M Oxid Med Cell Longev. 2013; 2013:831969.

PMID: 23936614 PMC: 3725911. DOI: 10.1155/2013/831969.


Testing the nanoparticle-allostatic cross-adaptation-sensitization model for homeopathic remedy effects.

Bell I, Koithan M, Brooks A Homeopathy. 2013; 102(1):66-81.

PMID: 23290882 PMC: 3539158. DOI: 10.1016/j.homp.2012.10.005.