Velez K, Leighton R, Decho A, Pinckney J, Norman R
Geohealth. 2023; 7(4):e2022GH000769.
PMID: 37091291
PMC: 10114089.
DOI: 10.1029/2022GH000769.
Ma J, Nie Y, Zhang L, Xu Y
Appl Environ Microbiol. 2023; 89(3):e0188422.
PMID: 36802225
PMC: 10056960.
DOI: 10.1128/aem.01884-22.
Akolkar J, Matson J
Adv Exp Med Biol. 2023; 1404:213-232.
PMID: 36792878
DOI: 10.1007/978-3-031-22997-8_11.
Givanoudi S, Heyndrickx M, Depuydt T, Khorshid M, Robbens J, Wagner P
Sensors (Basel). 2023; 23(2).
PMID: 36679407
PMC: 9860941.
DOI: 10.3390/s23020613.
Mekasha S, Linke D
Front Microbiol. 2022; 12:782673.
PMID: 34975803
PMC: 8714846.
DOI: 10.3389/fmicb.2021.782673.
Extensive Chemometric Investigations of Distinctive Patterns and Levels of Biogenic Amines in Fermented Foods: Human Health Implications.
Grootveld M, Percival B, Zhang J
Foods. 2020; 9(12).
PMID: 33291487
PMC: 7762153.
DOI: 10.3390/foods9121807.
Physiological and Transcriptional Responses of to Acid Stress in the Biosynthesis of ε-Poly-L-lysine.
Wang C, Ren X, Yu C, Wang J, Wang L, Zhuge X
Front Microbiol. 2020; 11:1379.
PMID: 32636829
PMC: 7317143.
DOI: 10.3389/fmicb.2020.01379.
Biochemical Characterization and Phylogenetic Analysis of the Virulence Factor Lysine Decarboxylase From .
Han L, Yuan J, Ao X, Lin S, Han X, Ye H
Front Microbiol. 2019; 9:3082.
PMID: 30619163
PMC: 6297170.
DOI: 10.3389/fmicb.2018.03082.
A wide diversity of bacteria from the human gut produces and degrades biogenic amines.
Pugin B, Barcik W, Westermann P, Heider A, Wawrzyniak M, Hellings P
Microb Ecol Health Dis. 2017; 28(1):1353881.
PMID: 28959180
PMC: 5614385.
DOI: 10.1080/16512235.2017.1353881.
Single cell super-resolution imaging of E. coli OmpR during environmental stress.
Foo Y, Spahn C, Zhang H, Heilemann M, Kenney L
Integr Biol (Camb). 2015; 7(10):1297-308.
PMID: 26156621
PMC: 8428147.
DOI: 10.1039/c5ib00077g.
Bacterial iron-sulfur cluster sensors in mammalian pathogens.
Miller H, Auerbuch V
Metallomics. 2015; 7(6):943-56.
PMID: 25738802
PMC: 4465050.
DOI: 10.1039/c5mt00012b.
Implications of chitin attachment for the environmental persistence and clinical nature of the human pathogen Vibrio vulnificus.
Williams T, Ayrapetyan M, Oliver J
Appl Environ Microbiol. 2013; 80(5):1580-7.
PMID: 24362430
PMC: 3957613.
DOI: 10.1128/AEM.03811-13.
Bacillus cereus cell response upon exposure to acid environment: toward the identification of potential biomarkers.
Desriac N, Broussolle V, Postollec F, Mathot A, Sohier D, Coroller L
Front Microbiol. 2013; 4:284.
PMID: 24106490
PMC: 3788345.
DOI: 10.3389/fmicb.2013.00284.
Three-component lysine/ornithine decarboxylation system in Lactobacillus saerimneri 30a.
Romano A, Trip H, Lolkema J, Lucas P
J Bacteriol. 2013; 195(6):1249-54.
PMID: 23316036
PMC: 3592000.
DOI: 10.1128/JB.02070-12.
Factors influencing biogenic amines accumulation in dairy products.
Linares D, Rio B, Ladero V, Martinez N, Fernandez M, Martin M
Front Microbiol. 2012; 3:180.
PMID: 22783233
PMC: 3390585.
DOI: 10.3389/fmicb.2012.00180.
Vibrio vulnificus: disease and pathogenesis.
Jones M, Oliver J
Infect Immun. 2009; 77(5):1723-33.
PMID: 19255188
PMC: 2681776.
DOI: 10.1128/IAI.01046-08.
Evidence that AphB, essential for the virulence of Vibrio vulnificus, is a global regulator.
Jeong H, Choi S
J Bacteriol. 2008; 190(10):3768-73.
PMID: 18344367
PMC: 2395019.
DOI: 10.1128/JB.00058-08.
Survival of and in situ gene expression by Vibrio vulnificus at varying salinities in estuarine environments.
Jones M, Warner E, Oliver J
Appl Environ Microbiol. 2007; 74(1):182-7.
PMID: 17993554
PMC: 2223215.
DOI: 10.1128/AEM.02436-07.
Lysine decarboxylase expression by Vibrio vulnificus is induced by SoxR in response to superoxide stress.
Kim J, Choi S, Lee J
J Bacteriol. 2006; 188(24):8586-92.
PMID: 17012399
PMC: 1698237.
DOI: 10.1128/JB.01084-06.
AphB influences acid tolerance of Vibrio vulnificus by activating expression of the positive regulator CadC.
Rhee J, Jeong H, Lee J, Choi S
J Bacteriol. 2006; 188(18):6490-7.
PMID: 16952939
PMC: 1595473.
DOI: 10.1128/JB.00533-06.