Liu X, Zhu D, Zhao F, Gao Y, Li J, Li Y
Plant Cell Rep. 2023; 42(12):1951-1965.
PMID: 37805949
DOI: 10.1007/s00299-023-03075-w.
Kong R, Li J, Liu F, Ma Y, Zhao H, Zhao H
Stem Cell Reports. 2023; 18(10):1940-1953.
PMID: 37683644
PMC: 10656303.
DOI: 10.1016/j.stemcr.2023.08.007.
Bravo-Plaza I, Tagua V, Arst H, Alonso A, Pinar M, Monterroso B
Elife. 2023; 12.
PMID: 37249218
PMC: 10275640.
DOI: 10.7554/eLife.85079.
Chen T, Lin Y, Zhang S, Liu S, Song L, Zhong W
Sci Adv. 2022; 8(50):eadd7945.
PMID: 36525490
PMC: 9757750.
DOI: 10.1126/sciadv.add7945.
Ozdemir C, Sahin N, Edgunlu T
Mol Biol Rep. 2022; 49(12):12193-12202.
PMID: 36198849
DOI: 10.1007/s11033-022-07970-5.
SNARE proteins: zip codes in vesicle targeting?.
Koike S, Jahn R
Biochem J. 2022; 479(3):273-288.
PMID: 35119456
PMC: 8883487.
DOI: 10.1042/BCJ20210719.
Structural basis for assembly of TRAPPII complex and specific activation of GTPase Ypt31/32.
Mi C, Zhang L, Huang G, Shao G, Yang F, You X
Sci Adv. 2022; 8(4):eabi5603.
PMID: 35080977
PMC: 8791620.
DOI: 10.1126/sciadv.abi5603.
Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation.
DSouza Z, Sumya F, Khakurel A, Lupashin V
Cells. 2021; 10(12).
PMID: 34943782
PMC: 8699264.
DOI: 10.3390/cells10123275.
An active tethering mechanism controls the fate of vesicles.
An S, Rivera-Molina F, Anneken A, Xi Z, McNellis B, Polejaev V
Nat Commun. 2021; 12(1):5434.
PMID: 34521845
PMC: 8440521.
DOI: 10.1038/s41467-021-25465-y.
The Dissection of SNAREs Reveals Key Factors for Vesicular Trafficking to the Endosome-like Compartment and Apicoplast via the Secretory System in Toxoplasma gondii.
Cao S, Yang J, Fu J, Chen H, Jia H
mBio. 2021; 12(4):e0138021.
PMID: 34340555
PMC: 8406237.
DOI: 10.1128/mBio.01380-21.
Reimagining dots and dashes: Visualizing structure and function of organelles for high-content imaging analysis.
Chin M, Espinosa J, Pohan G, Markossian S, Arkin M
Cell Chem Biol. 2021; 28(3):320-337.
PMID: 33600764
PMC: 7995685.
DOI: 10.1016/j.chembiol.2021.01.016.
Vesicle Transport in Plants: A Revised Phylogeny of SNARE Proteins.
Gu X, Brennan A, Wei W, Guo G, Lindsey K
Evol Bioinform Online. 2020; 16:1176934320956575.
PMID: 33116351
PMC: 7573729.
DOI: 10.1177/1176934320956575.
Nonredundant Roles of GRASP55 and GRASP65 in the Golgi Apparatus and Beyond.
Zhang X, Wang Y
Trends Biochem Sci. 2020; 45(12):1065-1079.
PMID: 32893104
PMC: 7641999.
DOI: 10.1016/j.tibs.2020.08.001.
A trafficome-wide RNAi screen reveals deployment of early and late secretory host proteins and the entire late endo-/lysosomal vesicle fusion machinery by intracellular Salmonella.
Kehl A, Goser V, Reuter T, Liss V, Franke M, John C
PLoS Pathog. 2020; 16(7):e1008220.
PMID: 32658937
PMC: 7377517.
DOI: 10.1371/journal.ppat.1008220.
Sec17 (α-SNAP) and Sec18 (NSF) restrict membrane fusion to R-SNAREs, Q-SNAREs, and SM proteins from identical compartments.
Jun Y, Wickner W
Proc Natl Acad Sci U S A. 2019; 116(47):23573-23581.
PMID: 31685636
PMC: 6876204.
DOI: 10.1073/pnas.1913985116.
Golgi Structure and Function in Health, Stress, and Diseases.
Li J, Ahat E, Wang Y
Results Probl Cell Differ. 2019; 67:441-485.
PMID: 31435807
PMC: 7076563.
DOI: 10.1007/978-3-030-23173-6_19.
Stx5-Mediated ER-Golgi Transport in Mammals and Yeast.
Linders P, van der Horst C, Ter Beest M, van den Bogaart G
Cells. 2019; 8(8).
PMID: 31357511
PMC: 6721632.
DOI: 10.3390/cells8080780.
Digging deep into Golgi phenotypic diversity with unsupervised machine learning.
Hussain S, Le Guezennec X, Yi W, Dong H, Chia J, Yiping K
Mol Biol Cell. 2017; 28(25):3686-3698.
PMID: 29021342
PMC: 5706995.
DOI: 10.1091/mbc.E17-06-0379.
Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion.
Yue P, Zhang Y, Mei K, Wang S, Lesigang J, Zhu Y
Nat Commun. 2017; 8:14236.
PMID: 28112172
PMC: 5267525.
DOI: 10.1038/ncomms14236.
Chaperoning SNARE assembly and disassembly.
Baker R, Hughson F
Nat Rev Mol Cell Biol. 2016; 17(8):465-79.
PMID: 27301672
PMC: 5471617.
DOI: 10.1038/nrm.2016.65.