» Articles » PMID: 11912130

The SLUG Zinc-finger Protein Represses E-cadherin in Breast Cancer

Overview
Journal Cancer Res
Specialty Oncology
Date 2002 Mar 26
PMID 11912130
Citations 460
Authors
Affiliations
Soon will be listed here.
Abstract

Loss of expression of the E-cadherin cell-cell adhesion molecule is important in carcinoma development and progression. Because previous data suggest that loss of E-cadherin expression in breast carcinoma may result from a dominant transcriptional repression pathway acting on the E-cadherin proximal promoter, we pursued studies of cis sequences and transcription factors regulating E-cadherin expression in breast cancer cells. E-box elements in the E-cadherin promoter were found to play a critical negative regulatory role in E-cadherin gene transcription in breast cancer cell lines lacking E-cadherin transcription. The E-box elements had a minimal role in E-cadherin transcription in breast cancer cell lines expressing E-cadherin. Two zinc-finger transcription factors known to bind E-box elements, SLUG and SNAIL, repressed E-cadherin-driven reporter gene constructs containing wild-type promoter sequences but not those with mutations in the E-box elements. Additionally, both SLUG and SNAIL repressed endogenous E-cadherin expression. These findings suggest SLUG and SNAIL are potential repressors of E-cadherin transcription in carcinomas lacking E-cadherin expression. Analysis of the expression patterns of SLUG, SNAIL, and E-cadherin in breast cancer cell lines demonstrated that expression of SLUG was strongly correlated with loss of E-cadherin transcripts. Taken together, the data indicate the E-box elements in the proximal E-cadherin promoter are critical in transcriptional repression of the E-cadherin gene, and SLUG is a likely in vivo repressor of E-cadherin in breast cancer.

Citing Articles

The impact of dysregulation SUMOylation on prostate cancer.

Li K, Wang H, Jiang B, Jin X J Transl Med. 2025; 23(1):286.

PMID: 40050932 PMC: 11887156. DOI: 10.1186/s12967-025-06271-2.


The Role of the Fox Gene in Breast Cancer Progression.

Pei S, Zhang D, Li Z, Liu J, Li Z, Chen J Int J Mol Sci. 2025; 26(4).

PMID: 40003882 PMC: 11855465. DOI: 10.3390/ijms26041415.


NSD3 protein methylation and stabilization transforms human ES cells into variant state.

Krishnamoorthy V, Hamdani F, Shukla P, Rao R, Anaitullah S, Biligiri K Life Sci Alliance. 2024; 8(3.

PMID: 39741006 PMC: 11707394. DOI: 10.26508/lsa.202402871.


Unraveling the Mechanism of Action of Ubiquitin-Specific Protease 5 and Its Inhibitors in Tumors.

Wang J, Fang S, Jiang Y, Hua Q Clin Med Insights Oncol. 2024; 18:11795549241281932.

PMID: 39391229 PMC: 11465303. DOI: 10.1177/11795549241281932.


Lack of basic rationale in epithelial-mesenchymal transition and its related concepts.

Cao Y Cell Biosci. 2024; 14(1):104.

PMID: 39164745 PMC: 11334496. DOI: 10.1186/s13578-024-01282-w.