» Articles » PMID: 11880949

Ascertainment-adjusted Parameter Estimates Revisited

Overview
Journal Am J Hum Genet
Publisher Cell Press
Specialty Genetics
Date 2002 Mar 7
PMID 11880949
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Ascertainment-adjusted parameter estimates from a genetic analysis are typically assumed to reflect the parameter values in the original population from which the ascertained data were collected. Burton et al. (2000) recently showed that, given unmodeled parameter heterogeneity, the standard ascertainment adjustment leads to biased parameter estimates of the population-based values. This finding has important implications in complex genetic studies, because of the potential existence of unmodeled genetic parameter heterogeneity. The authors further stated the important point that, given unmodeled heterogeneity, the ascertainment-adjusted parameter estimates reflect the true parameter values in the ascertained subpopulation. They illustrated these statements with two examples. By revisiting these examples, we demonstrate that if the ascertainment scheme and the nature of the data can be correctly modeled, then an ascertainment-adjusted analysis returns population-based parameter estimates. We further demonstrate that if the ascertainment scheme and data cannot be modeled properly, then the resulting ascertainment-adjusted analysis produces parameter estimates that generally do not reflect the true values in either the original population or the ascertained subpopulation.

Citing Articles

Statistical approaches for meta-analysis of genetic mutation prevalence.

Hujoel M, Parmigiani G, Braun D Genet Epidemiol. 2020; 45(2):154-170.

PMID: 33000511 PMC: 10391692. DOI: 10.1002/gepi.22364.


Familial recurrence risk with varying amount of family history.

Schaid D, McDonnell S, Thibodeau S Genet Epidemiol. 2019; 43(4):440-448.

PMID: 30740785 PMC: 6561475. DOI: 10.1002/gepi.22193.


Efficient generalized least squares method for mixed population and family-based samples in genome-wide association studies.

Li J, Yang J, Levin A, Montgomery C, Datta I, Trudeau S Genet Epidemiol. 2014; 38(5):430-8.

PMID: 24845555 PMC: 4112407. DOI: 10.1002/gepi.21811.


A Frailty-Model-Based Method for Estimating Age-Dependent Penetrance from Family Data.

Choi Y J Biom Biostat. 2013; Suppl 4(1).

PMID: 24294538 PMC: 3841342. DOI: 10.4172/2155-6180.S4-001.


Multiple genetic variant association testing by collapsing and kernel methods with pedigree or population structured data.

Schaid D, McDonnell S, Sinnwell J, Thibodeau S Genet Epidemiol. 2013; 37(5):409-18.

PMID: 23650101 PMC: 3706099. DOI: 10.1002/gepi.21727.


References
1.
Li C, Mantel N . A simple method of estimating the segregation ratio under complete ascertainment. Am J Hum Genet. 1968; 20(1):61-81. PMC: 1706251. View

2.
Vieland V, Hodge S . Inherent intractability of the ascertainment problem for pedigree data: a general likelihood framework. Am J Hum Genet. 1995; 56(1):33-43. PMC: 1801326. View

3.
Olson J, Cordell H . Ascertainment bias in the estimation of sibling genetic risk parameters. Genet Epidemiol. 2000; 18(3):217-35. DOI: 10.1002/(SICI)1098-2272(200003)18:3<217::AID-GEPI3>3.0.CO;2-8. View

4.
Pritchard J, Stephens M, Donnelly P . Inference of population structure using multilocus genotype data. Genetics. 2000; 155(2):945-59. PMC: 1461096. DOI: 10.1093/genetics/155.2.945. View

5.
Burton P, Palmer L, Jacobs K, Keen K, Olson J, Elston R . Ascertainment adjustment: where does it take us?. Am J Hum Genet. 2000; 67(6):1505-14. PMC: 1287927. DOI: 10.1086/316899. View