» Articles » PMID: 11867522

The Tim9p-Tim10p Complex Binds to the Transmembrane Domains of the ADP/ATP Carrier

Overview
Journal EMBO J
Date 2002 Feb 28
PMID 11867522
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

The soluble Tim9p-Tim10p (Tim, translocase of inner membrane) complex of the mitochondrial intermembrane space mediates the import of the carrier proteins and is a component of the TIM22 import system. The mechanism by which the Tim9p-Tim10p complex assembles and binds the carriers is not well understood, but previous studies have proposed that the conserved cysteine residues in the 'twin CX3C' motif coordinate zinc and potentially generate a zinc-finger-like structure that binds to the matrix loops of the carrier proteins. Here we have purified the native and recombinant Tim9p-Tim10p complex, and show that both complexes resemble each other and consist of three Tim9p and three Tim10p. Results from inductively coupled plasma--mass spectrometry studies failed to detect zinc in the Tim9p-Tim10p complex. Instead, the cysteine residues seemingly formed disulfide linkages. The Tim9p-Tim10p complex bound specifically to the transmembrane domains of the ADP/ATP carrier, but had no affinity for Tim23p, an inner membrane protein that is inserted via the TIM22 complex. The chaperone-like Tim9p-Tim10p complex thus may prevent aggregation of the unfolded carrier proteins in the aqueous intermembrane space.

Citing Articles

Interaction with the cysteine-free protein HAX1 expands the substrate specificity and function of MIA40 beyond protein oxidation.

Rothemann R, Stobbe D, Hoehne-Wiechmann M, Murschall L, Peker E, Knaup L FEBS J. 2024; 291(24):5506-5522.

PMID: 39564806 PMC: 11653687. DOI: 10.1111/febs.17328.


Oxidative protein folding in the intermembrane space of human mitochondria.

Zarges C, Riemer J FEBS Open Bio. 2024; 14(10):1610-1626.

PMID: 38867508 PMC: 11452306. DOI: 10.1002/2211-5463.13839.


Protein insertion into the inner membrane of mitochondria: routes and mechanisms.

Kizmaz B, Nutz A, Egeler A, Herrmann J FEBS Open Bio. 2024; 14(10):1627-1639.

PMID: 38664330 PMC: 11452304. DOI: 10.1002/2211-5463.13806.


Protein import in mitochondria biogenesis: guided by targeting signals and sustained by dedicated chaperones.

Dimogkioka A, Lees J, Lacko E, Tokatlidis K RSC Adv. 2022; 11(51):32476-32493.

PMID: 35495482 PMC: 9041937. DOI: 10.1039/d1ra04497d.


Mitochondrial protein translocation machinery: From TOM structural biogenesis to functional regulation.

Sayyed U, Mahalakshmi R J Biol Chem. 2022; 298(5):101870.

PMID: 35346689 PMC: 9052162. DOI: 10.1016/j.jbc.2022.101870.


References
1.
Koehler C, Merchant S, Schatz G . How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem Sci. 1999; 24(11):428-32. DOI: 10.1016/s0968-0004(99)01462-0. View

2.
Palmieri F, Bisaccia F, Capobianco L, Dolce V, Fiermonte G, Iacobazzi V . Mitochondrial metabolite transporters. Biochim Biophys Acta. 1996; 1275(1-2):127-32. DOI: 10.1016/0005-2728(96)00062-x. View

3.
Kerscher O, Sepuri N, Jensen R . Tim18p is a new component of the Tim54p-Tim22p translocon in the mitochondrial inner membrane. Mol Biol Cell. 2000; 11(1):103-16. PMC: 14760. DOI: 10.1091/mbc.11.1.103. View

4.
Jin H, May M, Tranebjaerg L, Kendall E, Fontan G, Jackson J . A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nat Genet. 1996; 14(2):177-80. DOI: 10.1038/ng1096-177. View

5.
Dekker P, Muller H, Rassow J, Pfanner N . Characterization of the preprotein translocase of the outer mitochondrial membrane by blue native electrophoresis. Biol Chem. 1996; 377(7-8):535-8. View