Identification of Genes Regulated by Dexamethasone in Multiple Myeloma Cells Using Oligonucleotide Arrays
Overview
Authors
Affiliations
Our previous studies have characterized Dexamethasone (Dex)-induced apoptotic signaling pathways in multiple myeloma (MM) cells; however, related transcriptional events are not fully defined. In the present study, gene expression profiles of Dex-treated MM cells were determined using oligonucleotide arrays. Dex triggers early transient induction of many genes involved in cell defense/repair-machinery. This is followed by induction of genes known to mediate cell death and repression of growth/survival-related genes. The molecular and genetic alterations associated with Dex resistance in MM cells are also unknown. We compared the gene expression profiles of Dex-sensitive and Dex-resistant MM cells and identified a number of genes which may confer Dex-resistance. Finally, gene profiling of freshly isolated MM patient cells validates our in vitro MM cell line data, confirming an in vivo relevance of these studies. Collectively, these findings provide insights into the basic mechanisms of Dex activity against MM, as well as mechanisms of Dex-resistance in MM cells. These studies may therefore allow improved therapeutic uses of Dex, based upon targeting genes that regulate MM cell growth and survival.
Molecular and immunological mechanisms of clonal evolution in multiple myeloma.
Forster S, Radpour R, Ochsenbein A Front Immunol. 2023; 14:1243997.
PMID: 37744361 PMC: 10516567. DOI: 10.3389/fimmu.2023.1243997.
Ren W, Yue C, Liu L, Du L, Xu K, Zhou Y Anal Cell Pathol (Amst). 2023; 2023:3377316.
PMID: 37638060 PMC: 10457169. DOI: 10.1155/2023/3377316.
Anti-Angiogenic Activity of Drugs in Multiple Myeloma.
Saltarella I, Altamura C, Campanale C, Laghetti P, Vacca A, Frassanito M Cancers (Basel). 2023; 15(7).
PMID: 37046651 PMC: 10093708. DOI: 10.3390/cancers15071990.
Disruption of the NKG2A:HLA-E Immune Checkpoint Axis to Enhance NK Cell Activation against Cancer.
Fisher J, Doyle A, Graham L, Khakoo S, Blunt M Vaccines (Basel). 2022; 10(12).
PMID: 36560403 PMC: 9783329. DOI: 10.3390/vaccines10121993.
Protein-Functionalized Microgel for Multiple Myeloma Cells' 3D Culture.
Marin-Paya J, Clara-Trujillo S, Cordon L, Gallego Ferrer G, Sempere A, Ribelles J Biomedicines. 2022; 10(11).
PMID: 36359316 PMC: 9687145. DOI: 10.3390/biomedicines10112797.