Polamraju S, Manochkumar J, Ganeshbabu M, Ramamoorthy S
Arch Microbiol. 2025; 207(2):45.
PMID: 39869136
DOI: 10.1007/s00203-025-04241-2.
Li W, Chen L, Zhao W, Li Y, Chen Y, Wen T
Hortic Res. 2024; 11(9):uhae202.
PMID: 39308791
PMC: 11415240.
DOI: 10.1093/hr/uhae202.
Liu C, Zhao Z, Xu Q, Zhang H, Liu X, Yin C
Microorganisms. 2023; 11(2).
PMID: 36838230
PMC: 9967899.
DOI: 10.3390/microorganisms11020266.
Jobelius H, Bianchino G, Borel F, Chaignon P, Seemann M
Molecules. 2022; 27(3).
PMID: 35163971
PMC: 8837944.
DOI: 10.3390/molecules27030708.
Yao D, Zhang Z, Chen Y, Lin Y, Xu X, Lai Z
Genes (Basel). 2022; 13(1).
PMID: 35052408
PMC: 8775320.
DOI: 10.3390/genes13010067.
The Terpene Mini-Path, a New Promising Alternative for Terpenoids Bio-Production.
Couillaud J, Leydet L, Duquesne K, Iacazio G
Genes (Basel). 2021; 12(12).
PMID: 34946923
PMC: 8701039.
DOI: 10.3390/genes12121974.
Characterization and Inhibition of 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase: A Promising Drug Target in and .
Ball H, Girma M, Zainab M, Soojhawon I, Couch R, Noble S
ACS Infect Dis. 2021; 7(11):2987-2998.
PMID: 34672535
PMC: 8594541.
DOI: 10.1021/acsinfecdis.1c00132.
Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications.
Hong K, Wang L, Johnpaul A, Lv C, Ma C
Int J Mol Sci. 2021; 22(17).
PMID: 34502286
PMC: 8430942.
DOI: 10.3390/ijms22179373.
Alternative metabolic pathways and strategies to high-titre terpenoid production in .
Rinaldi M, Ferraz C, Scrutton N
Nat Prod Rep. 2021; 39(1):90-118.
PMID: 34231643
PMC: 8791446.
DOI: 10.1039/d1np00025j.
Impact of culture condition modulation on the high-yield, high-specificity and cost-effective production of terpenoids from microbial sources: A review.
Shukla V, Phulara S
Appl Environ Microbiol. 2020; 87(4).
PMID: 33257314
PMC: 7851692.
DOI: 10.1128/AEM.02369-20.
Positioning Bacillus subtilis as terpenoid cell factory.
Pramastya H, Song Y, Elfahmi E, Sukrasno S, Quax W
J Appl Microbiol. 2020; 130(6):1839-1856.
PMID: 33098223
PMC: 8247319.
DOI: 10.1111/jam.14904.
Adaptation of hydroxymethylbutenyl diphosphate reductase enables volatile isoprenoid production.
Bongers M, Perez-Gil J, Hodson M, Schrubbers L, Wulff T, Sommer M
Elife. 2020; 9.
PMID: 32163032
PMC: 7067565.
DOI: 10.7554/eLife.48685.
Bacterial Semiochemicals and Transkingdom Interactions with Insects and Plants.
Calcagnile M, Tredici S, Tala A, Alifano P
Insects. 2019; 10(12).
PMID: 31817999
PMC: 6955855.
DOI: 10.3390/insects10120441.
Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis.
Volke D, Rohwer J, Fischer R, Jennewein S
Microb Cell Fact. 2019; 18(1):192.
PMID: 31690314
PMC: 6833178.
DOI: 10.1186/s12934-019-1235-5.
Determination of human γδ T cell-mediated cytotoxicity using a non-radioactive assay system.
Tagod M, Mizuta S, Sakai Y, Iwasaki M, Shiraishi K, Senju H
J Immunol Methods. 2019; 466:32-40.
PMID: 30654042
PMC: 6817948.
DOI: 10.1016/j.jim.2019.01.003.
Metabolic engineering of for production of mixed isoprenoid alcohols and their derivatives.
Zada B, Wang C, Park J, Jeong S, Park J, Singh H
Biotechnol Biofuels. 2018; 11:210.
PMID: 30061932
PMC: 6058358.
DOI: 10.1186/s13068-018-1210-0.
A Defective Undecaprenyl Pyrophosphate Synthase Induces Growth and Morphological Defects That Are Suppressed by Mutations in the Isoprenoid Pathway of Escherichia coli.
MacCain W, Kannan S, Jameel D, Troutman J, Young K
J Bacteriol. 2018; 200(18).
PMID: 29986944
PMC: 6112006.
DOI: 10.1128/JB.00255-18.
A high-throughput screening campaign to identify inhibitors of DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD).
Haymond A, Dowdy T, Johny C, Johnson C, Ball H, Dailey A
Anal Biochem. 2017; 542:63-75.
PMID: 29180070
PMC: 5817008.
DOI: 10.1016/j.ab.2017.11.018.
A single nucleotide mutation of IspF gene involved in the MEP pathway for isoprenoid biosynthesis causes yellow-green leaf phenotype in rice.
Huang R, Wang Y, Wang P, Li C, Xiao F, Chen N
Plant Mol Biol. 2017; 96(1-2):5-16.
PMID: 29143298
DOI: 10.1007/s11103-017-0668-7.
Transcriptome Sequencing Analysis Reveals a Difference in Monoterpene Biosynthesis between Scented 'Siberia' and Unscented 'Novano'.
Hu Z, Tang B, Wu Q, Zheng J, Leng P, Zhang K
Front Plant Sci. 2017; 8:1351.
PMID: 28824685
PMC: 5543080.
DOI: 10.3389/fpls.2017.01351.