» Articles » PMID: 11797997

Electroporation in a Model of Cardiac Defibrillation

Overview
Date 2002 Jan 19
PMID 11797997
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: It is known that high-strength shock disrupts the lipid matrix of the myocardial cell membrane and forms reversible aqueous pores across the membrane. This process is known as "electroporation." However, it remains unclear whether electroporation contributes to the mechanism of ventricular defibrillation. The aim of this computer simulation study was to examine the possible role of electroporation in the success of defibrillation shock.

Methods And Results: Using a modified Luo-Rudy-1 model, we simulated two-dimensional myocardial tissue with a homogeneous bidomain nature and unequal anisotropy ratios. Spiral waves were induced by the S1-S2 method. Next, monophasic defibrillation shocks were delivered externally via two line electrodes. For nonelectroporating tissue, termination of ongoing fibrillation succeeded; however, new spiral waves were initiated, even with high-strength shock (24 V/cm). For electroporating tissue, high-strength shock (24 V/cm) was sufficient to extinguish ongoing fibrillation and did not initiate any new spiral waves. Weak shock (16 to 20 V/cm) also extinguished ongoing fibrillation; however, in contrast to the high-strength shock, new spiral waves were initiated. Success in defibrillation depended on the occurrence of electroporation-mediated anodal-break excitation from the physical anode and the virtual anode. Some excitation wavefronts following electrical shock used a deexcited area with recovered excitability as a pass-through point; therefore, electroporation-mediated anodal-break excitation is necessary to block out the pass-through point, resulting in successful defibrillation.

Conclusion: The electroporation-mediated anodal-break excitation mechanism may play an important role in electrical defibrillation.

Citing Articles

Excitation of murine cardiac myocytes by nanosecond pulsed electric field.

Azarov J, Semenov I, Casciola M, Pakhomov A J Cardiovasc Electrophysiol. 2018; 30(3):392-401.

PMID: 30582656 PMC: 6422740. DOI: 10.1111/jce.13834.


Spatial distribution and extent of electroporation by strong internal shock in intact structurally normal and chronically infarcted rabbit hearts.

Kim S, Vasanji A, Efimov I, Cheng Y J Cardiovasc Electrophysiol. 2008; 19(10):1080-9.

PMID: 18479336 PMC: 2773614. DOI: 10.1111/j.1540-8167.2008.01201.x.


Hybrid finite element method for describing the electrical response of biological cells to applied fields.

Ying W, Henriquez C IEEE Trans Biomed Eng. 2007; 54(4):611-20.

PMID: 17405368 PMC: 2814055. DOI: 10.1109/TBME.2006.889172.


Membrane electroporation theories: a review.

Chen C, Smye S, Robinson M, Evans J Med Biol Eng Comput. 2006; 44(1-2):5-14.

PMID: 16929916 DOI: 10.1007/s11517-005-0020-2.


Induction of ventricular arrhythmias following mechanical impact: a simulation study in 3D.

Li W, Kohl P, Trayanova N J Mol Histol. 2004; 35(7):679-86.

PMID: 15614623 DOI: 10.1007/s10735-004-2666-8.