6.
Salemme F
. An hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b5. J Mol Biol. 1976; 102(3):563-8.
DOI: 10.1016/0022-2836(76)90334-x.
View
7.
Funk W, Lo T, Mauk M, Brayer G, MacGillivray R, Mauk A
. Mutagenic, electrochemical, and crystallographic investigation of the cytochrome b5 oxidation-reduction equilibrium: involvement of asparagine-57, serine-64, and heme propionate-7. Biochemistry. 1990; 29(23):5500-8.
DOI: 10.1021/bi00475a013.
View
8.
Sun Y, Wang Y, Yan M, Sun B, Xie Y, Huang Z
. Structure, interaction and electron transfer between cytochrome b5, its E44A and/or E56A mutants and cytochrome c. J Mol Biol. 1999; 285(1):347-59.
DOI: 10.1006/jmbi.1998.2295.
View
9.
Xue L, Wang Y, Xie Y, Yao P, Wang W, Qian W
. Effect of mutation at valine 61 on the three-dimensional structure, stability, and redox potential of cytochrome b5. Biochemistry. 1999; 38(37):11961-72.
DOI: 10.1021/bi990893b.
View
10.
Pfeil W
. Thermodynamics of apocytochrome b5 unfolding. Protein Sci. 1993; 2(9):1497-501.
PMC: 2142466.
DOI: 10.1002/pro.5560020914.
View
11.
Caffrey M
. Strategies for the study of cytochrome c structure and function by site-directed mutagenesis. Biochimie. 1994; 76(7):622-30.
DOI: 10.1016/0300-9084(94)90139-2.
View
12.
Mauk M, Reid L, Mauk A
. Spectrophotometric analysis of the interaction between cytochrome b5 and cytochrome c. Biochemistry. 1982; 21(8):1843-6.
DOI: 10.1021/bi00537a021.
View
13.
Mauk A, Mauk M, MOORE G, Northrup S
. Experimental and theoretical analysis of the interaction between cytochrome c and cytochrome b5. J Bioenerg Biomembr. 1995; 27(3):311-30.
DOI: 10.1007/BF02110101.
View
14.
Northrup S, Thomasson K, Miller C, Barker P, Eltis L, Guillemette J
. Effects of charged amino acid mutations on the bimolecular kinetics of reduction of yeast iso-1-ferricytochrome c by bovine ferrocytochrome b5. Biochemistry. 1993; 32(26):6613-23.
DOI: 10.1021/bi00077a014.
View
15.
Wang Z, Wang Y, Wang W, Xue L, Wu X, Xie Y
. The effect of mutation at valine-45 on the stability and redox potentials of trypsin-cleaved cytochrome b5. Biophys Chem. 2000; 83(1):3-17.
DOI: 10.1016/s0301-4622(99)00119-2.
View
16.
Estabrook R, Hildebrandt A, Baron J, NETTER K, Leibman K
. A new spectral intermediate associated with cytochrome P-450 function in liver microsomes. Biochem Biophys Res Commun. 1971; 42(1):132-9.
DOI: 10.1016/0006-291x(71)90372-x.
View
17.
Bernardi P, Azzone G
. Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J Biol Chem. 1981; 256(14):7187-92.
View
18.
Caffrey M, Cusanovich M
. Site-specific mutagenesis studies of cytochromes c. Biochim Biophys Acta. 1994; 1187(3):277-88.
DOI: 10.1016/0005-2728(94)90001-9.
View
19.
Davidson V
. What controls the rates of interprotein electron-transfer reactions. Acc Chem Res. 2000; 33(2):87-93.
DOI: 10.1021/ar9900616.
View
20.
Sannes L, HULTQUIST D
. Effects of hemolysate concentration, ionic strength and cytochrome b5 concentration on the rate of methemoglobin reduction in hemolysates of human erythrocytes. Biochim Biophys Acta. 1978; 544(3):547-54.
DOI: 10.1016/0304-4165(78)90329-x.
View